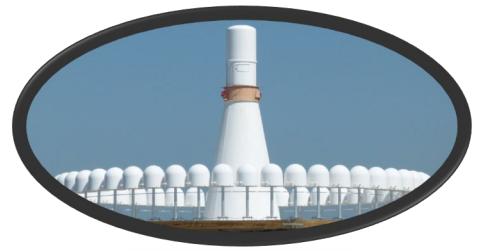
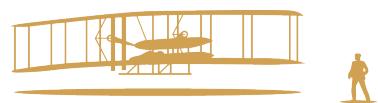
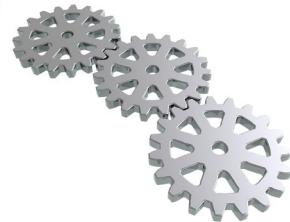


CyberBoat Challenge: Building Talent and Community


Jeremy Daily, Associate Professor of Systems Engineering
jeremy.daily@colostate.edu



begins to slow down
and the car pulls out ahead.

Can we do this with boats?

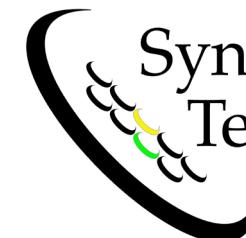
- Unauthorized (or unknown) Wireless to the vessel's controller area network.



US Air Force Flightline Electronics Maintenance

WRIGHT STATE
UNIVERSITY

Formal Education in Mechanical Engineering


Contracted Aerospace Engineer at Wright-Patterson AFB

THE UNIVERSITY of
TULSA

Faculty in the Department of Mechanical Engineering

Introducing Dr. Jeremy Daily

Synercon
Technologies

Startup Company for Heavy Vehicle Digital Forensics

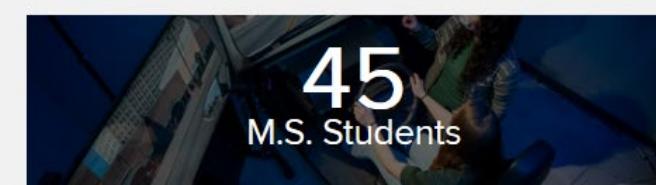
Co-Founder and Director

SYSTEMS ENGINEERING
COLORADO STATE UNIVERSITY

Department of Systems Engineering

Our students and faculty implement systems-thinking to solve the world's most complex problems, ranging from aerospace systems to cybersecurity implementation.

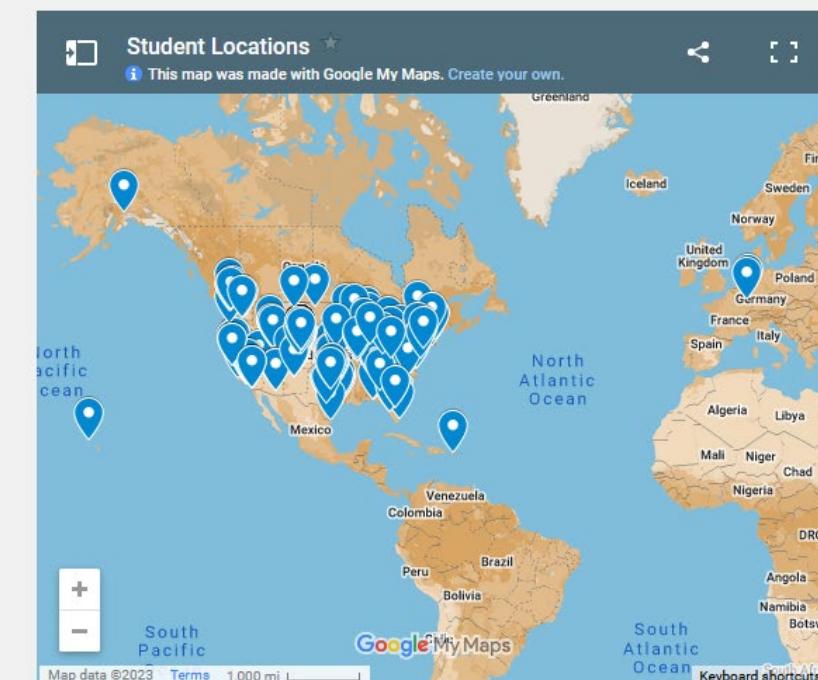
[Application Information](#)


[Course Offerings](#)

<https://www.engr.colostate.edu/se>

Systems Engineering by the Numbers

56
M.E. Students


186
Ph.D. Students

Where Our Students Are Located

Our online program allows students from all over the country and world to access our degree programs and the expertise of our professors.

Use the map to explore where our students are located while studying with us!

Agenda

- Motivation
- CyberBoat Challenge
 - What: Learn maritime cybersecurity by hacking
 - Who: Students, Security Researchers, Government, Industry
 - Where: Michigan, South Carolina
 - When: May 2022, Sep. 2024 (planned)
 - Why: Develop talent and foster community
- CyberTruck Challenge
- J1939 Cybersecurity Examples
 - ELD Hack
 - CAN Bus Denial of Service
 - Message Spoofing
 - Address Claim Attacks
 - Transport Protocol Vulnerabilities

FEDERAL REGISTER

The Daily Journal of the United States Government

Government Pressure through Executive Order

<https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity>

PUBLISHED DOCUMENT

Executive Order 14028 of May 12, 2021

Improving the Nation's Cybersecurity

By the authority vested in me as President by the Constitution and the laws of the United States of America, it is hereby ordered as follows:

Section 1. Policy. The United States faces persistent and increasingly sophisticated malicious cyber campaigns that threaten the public sector, the private sector, and ultimately the American people's security and privacy. The Federal Government must improve its efforts to identify, deter, protect against, detect, and respond to these actions and actors. The Federal Government must also carefully examine what occurred during any major cyber incident and apply lessons learned. But cybersecurity requires more than government action.

Protecting our Nation from malicious cyber actors requires the Federal Government to partner with the private sector. The private sector must adapt to the continuously changing threat environment, ensure its products are built and operate securely, and partner with the Federal Government to foster a more secure cyberspace. In the end, the trust we place in our digital infrastructure should be proportional to how trustworthy and transparent that infrastructure is.

DOCUMENT DETAILS

Printed version:
PDF

Publication Date:
05/17/2021

Agency:
Executive Office of the President

Document Type:
Presidential Document

Presidential Document Type:
Executive Order

E.O. Citation:
E.O. 14028 of May 12, 2021

Document Citation:
86 FR 26633

Page:
26633-26647 (15 pages)

Document Number:
2021-10460

Maritime Response for Cybersecurity

<https://www.federalregister.gov/documents/2024/02/22/2024-03075/cybersecurity-in-the-marine-transportation-system>

What is the NMEA Response?

https://www.federalregister.gov/documents/2024/02/22/2024-03075/cybersecurity-in-the-marine-transportation-system

Sections ▾ Browse ▾ Search ▾ Reader Aids ▾ My FR ▾ Search Documents

 FEDERAL REGISTER
The Daily Journal of the United States Government

Cybersecurity in the Marine Transportation System

A Proposed Rule by the Coast Guard on 02/22/2024

This document has a comment period that ends in 15 days. (04/22/2024) [SUBMIT A FORMAL COMMENT](#)

23 comments received. [View posted comments](#)

PUBLISHED DOCUMENT

AGENCY:
Coast Guard, Department of Homeland Security (DHS).

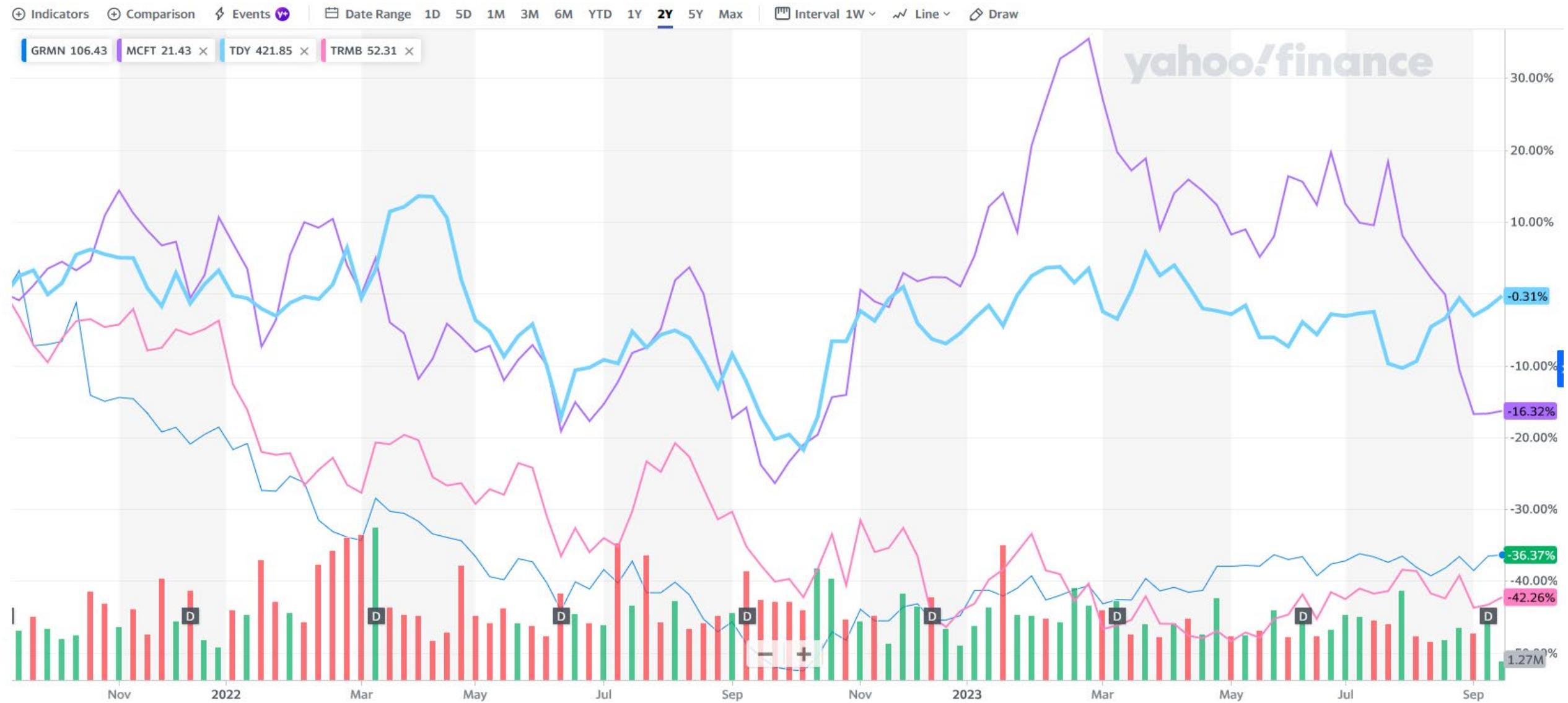
ACTION:
Notice of proposed rulemaking.

SUMMARY:
The Coast Guard proposes to update its maritime security regulations by adding regulations specifically focused on establishing minimum cybersecurity requirements for U.S.-flagged vessels, Outer Continental Shelf facilities, and U.S. facilities subject to the Maritime Transportation Security Act of 2002 regulations. This proposed rule would help to address current and emerging

DOCUMENT DETAILS

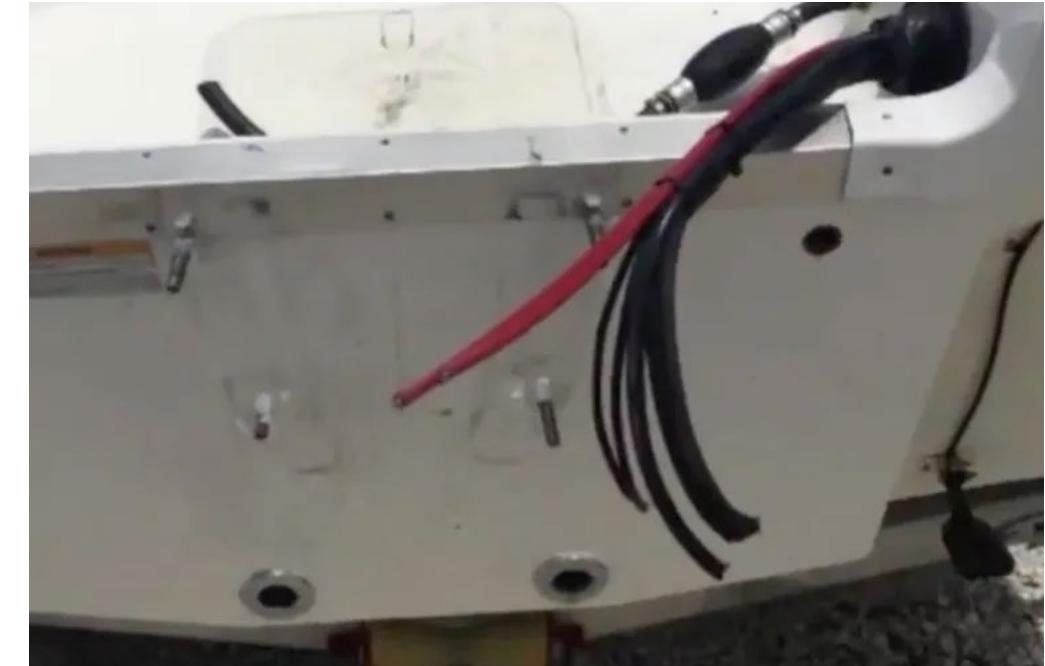
Printed version: [PDF](#)
Publication Date: 02/22/2024
Agencies: Department of Homeland Security, Coast Guard
Dates: Comments and related material must be received by the Coast Guard on or before April 22, 2024.
Comments Close: 04/22/2024
Document Type: Proposed Rule

Types of Hackers


- White Hat (Ethical) Hackers
 - Examples: Researchers, penetration testers, students
 - Outcomes: Responsible disclosures, opportunities to fix products
- Grey Hat Hackers
 - Examples: Cyberpunks, Hacktivists
 - Outcomes: Loss of reputation and revenue for a company, safety recalls, privacy exposure
- Black Hat Hackers
 - Examples: Nation states, advanced persistent threats (APTs), cyber-insider, criminals
 - Outcome: theft, loss, destruction, leaked information, privacy exposure, safety concerns, war

Motivations:

- Curiosity
- Financial
- Notoriety
- Revenge
- Recreation
- Ideology
- Aggression


Use curious ethical hackers to protect against the others

Why Hack Boats?

Cybersecurity and Theft

- Manufacturers add PINs or passcodes in devices to limit post-theft utility
 - Not used
 - Not changed
- Firmware modifications “defeature” PINs – industrialize theft.

<https://www.tradeonlytoday.com/tech/task-force-seeks-to-stop-marine-engine-and-electronics-thefts>

The screenshot shows the 'Expert Settings' screen with a 'PIN' label at the top. Below it is a text input field with placeholder text: 'Enter your password. (The default PIN is 0000.)'. Below the input field is a numeric keypad with four columns of four asterisks each. At the bottom is a 'Cancel' button with a 'X' icon.

Chip Tuning

Prior research lowers the barrier to entry for hacking on marine systems.

<https://www.alientech-tuning.com/>

https://www.alientech-tuning.com/product/kess3-master-marine-pwc-obd-protocols-activation/

Home > Kess 3 Tuning Tools and Software > Kess3 Master > KESS3 Master – Marine & PWC OBD Protocols activation

KESS3 MASTER – MARINE & PWC OBD PROTOCOLS ACTIVATION

Code: KESS3MA004 (3 customer reviews)

KESS3
KESS3 Master
Marine & PWC
OBD Protocols activation

KESS3 MASTER

£1,160.00

– 1 + **Add to cart**

SHARE (0)

DESCRIPTION **REVIEWS (3)**

DESCRIPTION

Alientech Kess3 Master Marine OBD Protocols. This activation package for the Kess 3 is for Marine and private water vehicles. Therefore, specifically, it is for marine tuning and ECU remapping applications that can be tuned through the OBD port.

The Alientech Kess3 Master Marine OBD Protocols are available as a single activation to your kess3 OBD tuning tool. As well as the option to add them to other single or multiple Kess 3 activation protocol groups. And hence building a deeper level of tuning options.

This is an OBD master Kess 3 activation package. As you are no doubt aware. Master tuning tools are usually selected by those who wish to purchase tuning files and ECU remapping files from a selection of tuning file providers. Unlike the slave tool option, you are not reliant on just one file provider. As well as tuners who wish to write their own tuning files, which of course the master version also permits.

SATCOM Terminals: Hacking by Air, Sea, and Land

Ruben Santamarta
Principal Security Consultant

White Hat Hacking Example

Abstract

Satellite Communications (SATCOM) plays a vital role in the global telecommunications system. IOActive evaluated the security posture of the most widely deployed Inmarsat, Iridium, and Thuraya SATCOM terminals.

IOActive analyzed the firmware of these devices and found that malicious actors could abuse all of the devices within the scope of this study. The vulnerabilities included what would appear to be backdoors, hardcoded credentials, undocumented, and/or insecure protocols.

These vulnerabilities have the potential to allow a malicious actor to intercept, manipulate, or block communications, and in some cases, to remotely take control of the physical device.

IOActive

Hardware | Software | Wetware
SECURITY SERVICES

https://ioactive.com/pdfs/IOActive_SATCOM_Security_WhitePaper.pdf

Vendor	Product	Vulnerability Class	Service	Severity
Harris	 RF-7800-VU024 RF-7800-DU024	Hardcoded Credentials Undocumented Protocols Insecure Protocols Backdoors	BGAN	Critical
Hughes	 9201/9202/9450/9502	Hardcoded Credentials Undocumented Protocols Insecure Protocols Backdoors	BGAN BGAN M2M	Critical
Hughes	 ThurayaIP	Hardcoded Credentials Insecure Protocols Undocumented Protocols Backdoors	Thuraya Broadband	Critical
Cobham	 EXPLORER (all versions)	Weak Password Reset Insecure Protocols	BGAN	Critical
Cobham	 SAILOR 900 VSAT	Weak Password Reset Insecure Protocols Hardcoded Credentials	VSAT	Critical
Cobham	 AVIATOR 700 (E/D)	Backdoors Weak Password Reset Insecure Protocols Hardcoded credentials	SwiftBroadband Classic Aero	Critical
Cobham	 SAILOR FB 150/250/500	Weak Password Reset Insecure Protocols	FB	Critical
Cobham	 SAILOR 6000 Series	Insecure Protocols Hardcoded Credentials	Inmarsat-C	Critical
JRC	 JUE-250/500 FB	Hardcoded Credentials Insecure Protocols Undocumented Protocols Backdoors	FB	Critical
Iridium	 Pilot/OpenPort	Hardcoded Credentials Undocumented Protocols	Iridium	Critical

Grey Hat Hacking

<https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/>

- <https://illmatics.com/Remote%20Car%20Hacking.pdf>

Hacktivism

Contents lists available at [ScienceDirect](#)

Ocean and Coastal Management

journal homepage: www.elsevier.com/locate/ocecoaman

Environmental impacts of increasing leisure boating activity in Mediterranean coastal waters

Arnau Carreño*, Josep Lloret

Oceans and Human Health Chair, Institute of Aquatic Ecology, University of Girona, C/ Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain

<https://www.atlanticcouncil.org/in-depth-research-reports/issue-brief/cybersecurity-concerns-for-the-energy-sector-in-the-maritime-domain/>

Cybersecurity Energy Transitions Geopolitics & Energy Security Maritime Security

Issue Brief | December 6, 2021

Cybersecurity concerns for the energy sector in the maritime domain

By [Andy Bochman](#) and [Ian Ralby](#)

<https://www.reuters.com/markets/commodities/new-fsru-arrives-france-greenpeace-blocks-port-2023-09-18/>

REUTERS World Business Markets Sustainability Legal Breakingviews Technology Inve

Greenpeace blocks arrival of new LNG unit at French port

By Forrest Crellin

September 18, 2023 8:51 AM MDT · Updated a day ago

[2/2] Greenpeace environmental activists on kayaks write "gas kills" on a LNG processing terminal set to be operated by Total Energies in Le Havre port, France, September 18, 2023. Jean Nicholas Guillot / Greenpeace /Handout via REUTERS
[Acquire Licensing Rights](#)

PARIS, Sept 18 (Reuters) - A new LNG floating storage regasification unit (FSRU) arrived in western France on Monday morning, a TotalEnergies' ([TTEF.PA](#)) spokesperson said, as activist group Greenpeace tried to prevent it from entering port.

Technology

Ships fooled in GPS spoofing attack suggest Russian cyberweapon

By [David Hambling](#)

10 August 2017

Black Hat
Hacking
Examples

HMS Defender: AIS spoofing is opening up a new front in the war on reality

By [Tom Bateman](#)

Published on 28/06/2021 - 15:40 • Updated 16:03

Share this article

A British warship triggered a dispute with Russia last week. But the conflict may have begun online even before alleged warning shots were fired.

An incident involving a British warship off the coast of Russian-occupied Crimea on June 24 may have begun online - with a virtual voyage that never really happened.

Worst Case Maritime Sensor Data in Decision Making

The Truth About Tonkin

Questions about the Gulf of Tonkin incidents have persisted for more than 40 years. But once-classified documents and tapes released in the past several years, combined with previously uncovered facts, make clear that high government officials distorted facts and deceived the American public about events that led to full U.S. involvement in the Vietnam War.

By Lieutenant Commander Pat Paterson, U.S. Navy

February 2008 | Naval History Magazine | Volume 22, Number 1

<https://www.usni.org/magazines/naval-history-magazine/2008/february/truth-about-tonkin>

We need a workforce to address
maritime cybersecurity challenges.

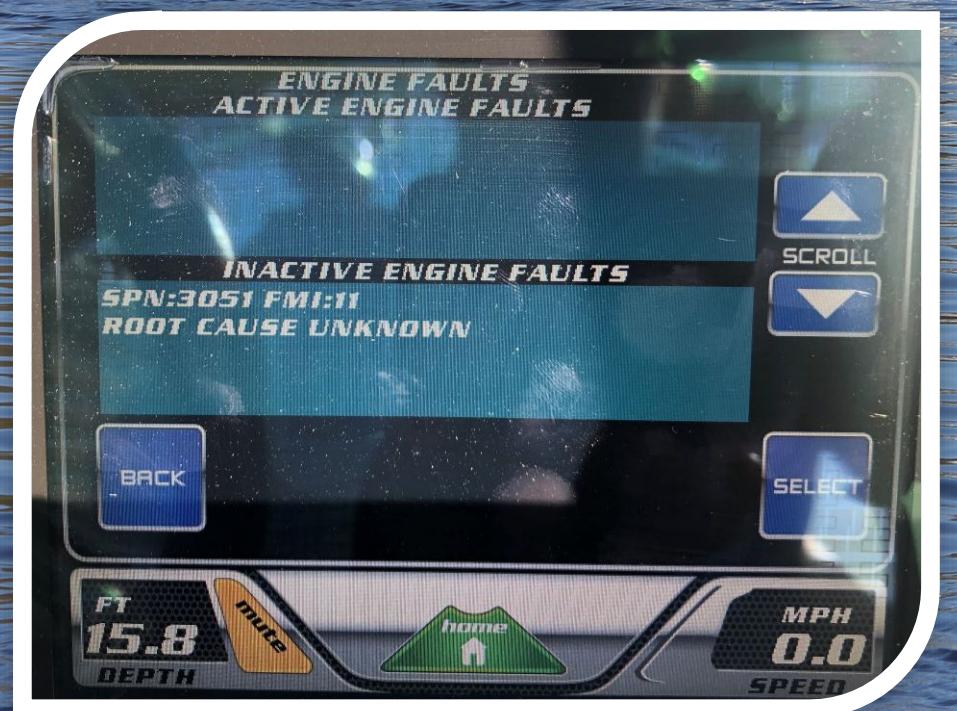
What can we do about it?

Students connected to the NMEA2000 network on a Mastercraft X30

CyberBoat Challenge

- Inaugural Event at Michigan Tech Univ.
 - May of 2022
 - Houghton, MI (Upper Peninsula)

Misson Statement


1. Develop the next generation workforce by bringing awareness, excitement, professional involvement, and practicum-based training to the maritime cyber domain.
2. Establish a community of interest for maritime cybersecurity that transcends individual companies or departments and reaches across disciplines and organizations to make a more universal and experienced base of engineers and managers.

CyberBoat Challenge Class of 2022

Co-located Classroom and Learning Platform (Boat)

Students get unique opportunities to apply theory on the water

Schedule Highlights

Industry experts teach specialty classes

Last day is reserved for free-form assessments and student reports

CyberBoat Challenge 2022 Schedule					Versio		
	Sunday 22May2022	Monday 23May2022	Tuesday 24May2022	Wednesday 25May2022			
Before 0700	Site Closed	Site Closed					
0700-0730		Breakfast (Dorm Cafeteria)					
0730-0800							
0800-0830		Maritime ICS Protocol Exploitation (Fathom5)	Software RE (GRIMM)	Assessment			
0830-0900							
0900-0930							
0930-1000		RF Protocol Exploitation (Libertas & Fathom5)	Intro to J1939 (Daily)	Assessment			
1000-1030							
1030-1100							
1100-1130		Lunch (GLRC 201)	Assessment	Assessment			
1130-1200							
1200-1230							
1230-1300		RF Protocol Exploitation (Libertas & Fathom5)	M-Tech staff time	REPORTS			
1300-1330							
1330-1400							
1400-1430		Maritime Sensor Exploitation (Fathom5)	Water Safety (USCG)	REPORTS			
1430-1500							
1500-1530							
1530-1600		Maritime Testbed Assessment & CTF (Fathom5)	Maritime J1939 Demo (Daily)*	Release			
1600-1630							
1630-1700							
1700-1730		Assessment Preparation and Planning	How to Conduct an Assessment* (AIS)	Site Closed			
1730-1800							
1800-1830	Informal Welcome Reception (Bonfire Grill)						
1830-1900	Dinner (Bonfire Grill)						
1900-1930	Dinner (Bonfire Grill)						
1930-2000	Dinner (Bonfire Grill)						
2000-2030	Dinner (Bonfire Grill)						
2030-2100	Dinner (Bonfire Grill)			Site Closed			
After 2100	Site Closed			Site Closed			

Maritime Automatic Identification System (AIS) (in)security

Wireless Systems and Software Defined Radio (SDR)

Introduction to SAE J1939

A primer for in-vehicle
networking

PREPARED BY DR. JEREMY DAILY

SYSTEMS ENGINEERING
COLORADO STATE UNIVERSITY

Grace Maritime Cyber Testbed

- Hands on with a large vessel simulator

NMEA 2000

Decoding Example

- can0 0DF50B81 42 B5 08 00 00 00 00 FF

0D - Priority (0b0000 1101 = 3)

DF50B - Water Depth PGN (0x1F50B)

81 - Dynamically Claimed Source Address

42 - Sequence ID (0x42 = 66)

B5 08 00 00 - Depth (0x8B5 = 2,229*0.01m
= 22.29m = 73.13ft)

00 00 - Offset (zero)

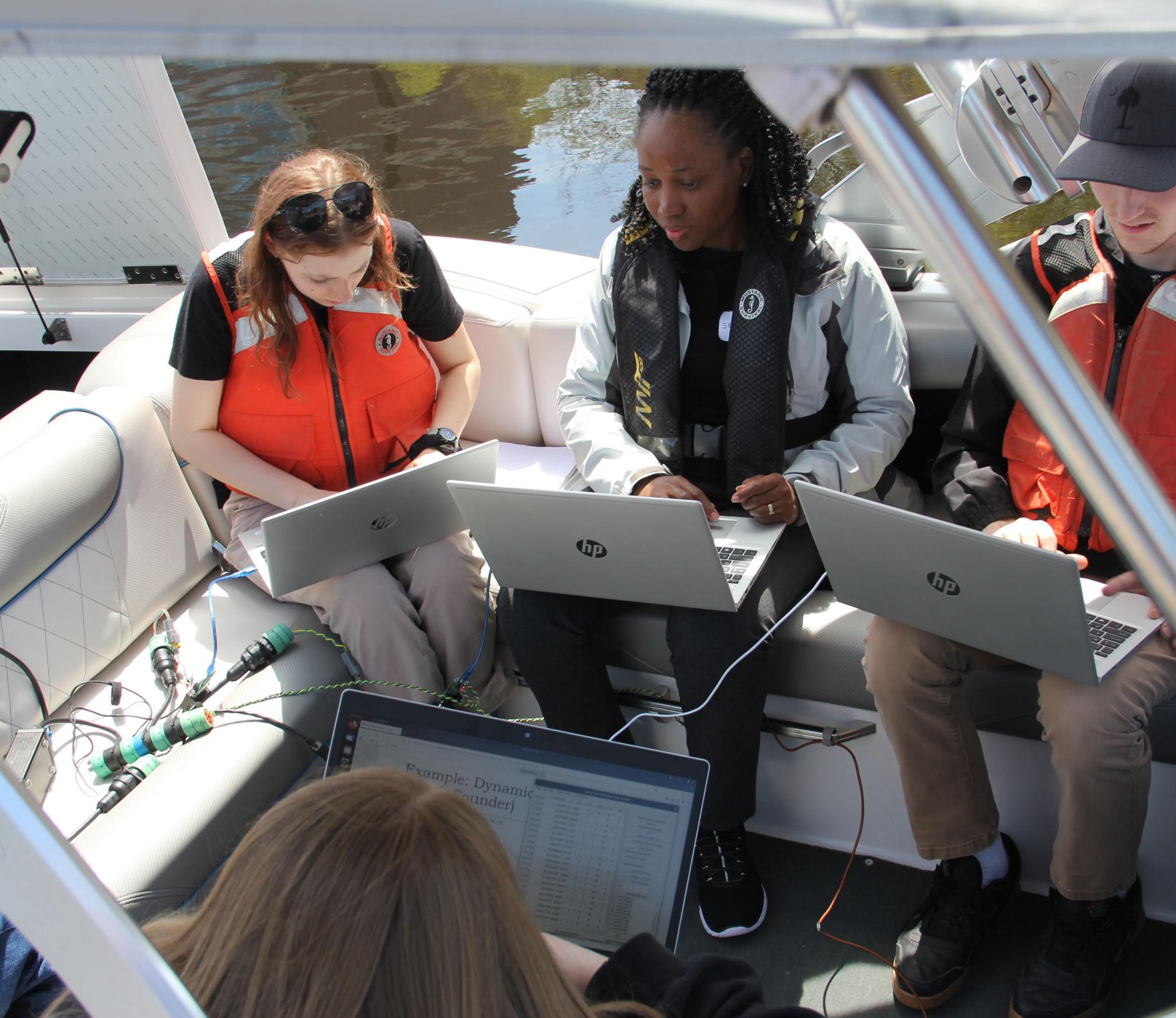
FF - Maximum Depth Range (Not Available)

Water Depth

PGN: 128267

hex: 1F50B

Water depth relative to the transducer and offset of the measuring transducer. Positive offset numbers provide the distance from the transducer to the waterline. Negative offset numbers provide the distance from the transducer to the part of the keel of interest.


Single Frame:	Yes	Priority Default:	3	Default Update Rate:	1000 milliseconds	Frequency:	1.	cycles per second	
Destination:	Global	Query Support:	Optional	Command Support:	Optional	ACK Rqmts:	None		
Field #	Field Name	Original Reference ID # 60							
1	Sequence ID	Byte Field Size:	1	Request Parameter	Optional	Command Parameter:	Optional		
	DD056 Sequence ID	Bit Field Size:		An upward counting number used to tie related information together between different PGNs. For example, the SID would be used to tie together the COG, SOG and RAIM values to a given position. 255=no valid position fix to tie it to. Range 0 to 252 for valid position fixes.					
	DF53 Integer, 8 bit unsigned	uint8	Range:	0 to 252	Resolution:	1 bit	Unit-less number		
2	Water Depth, Transducer	Byte Field Size:	4	Request Parameter	Optional	Command Parameter:	Optional		
	DD162 Water Depth At Transducer	Bit Field Size:		Depth relative to the transducer location. Range of value specified in "Maximum Depth Range" (field 4).					
	DF09 Distance	uint32	Range:	0 to ~4.295x10E+7 m	Resolution:	1x10E-2 m			
3	Offset	Byte Field Size:	2	Request Parameter	Optional	Command Parameter:	Optional		
	DD161 Transducer Offset	Bit Field Size:		Positive values represent distance from transducer to water line and negative values represent distance from the transducer to the keel.					
	DF46 Distance, signed, medium	int16	Range:	+/- 32.764 m	Resolution:	1x10E-3 m			
4	Maximum Depth Range	Byte Field Size:	1	Request Parameter	Optional	Command Parameter:	Optional		
	DD350 Maximum Depth Range	Bit Field Size:		Device classification of the Maximum Range over which water depth can be measured. 253 = Deeper than 2,520 meters 254 = Error 255 = Data Not Available					
	DF109 Distance, Rough Approx	uint8	Range:	0 - 2,520 meters	Resolution:	10 meters			

Smart Buoy Hacking

Mentors work with students to explore cybersecurity of maritime systems

Connecting to the CAN Bus on the Boat

Students had their own connection to the NMEA2000 network.

Student Presentations

CyberBoat Challenge Sponsorship

- Michigan Tech Univ. provided housing
- Systems Engineering at Colorado State Univ. provided meals and travel
- Students provide their own travel
- We towed the boat from CO to MI
 - Yes, that's snow on the ski boat

SYSTEMS ENGINEERING
COLORADO STATE UNIVERSITY

Sponsorship Opportunities

- The CyberBoat Challenge seeks sponsorship to conduct the event as a non-profit.
- Please consider one of the sponsorship tiers.
- Donations are tax deductible.
- Contact Jeremy at Jeremy.Daily@colostate.edu for additional details

Platinum - \$25,000 or higher

- Prominent Logo
- Up to 6 organization representatives

Gold - \$15,000

- Large Logo
- Up to 4 organization representatives

Silver – \$10,000

- Medium Logo
- Up to 3 organization representatives

Bronze - \$5,000

- Normal Logo
- Up to 2 organization representatives

Stainless Steel \$1000

- 1 organization representative
- Acknowledgment

USCB Earns \$1M NSF Grant For Maritime Cybersecurity

Vision

Our vision is a world class Innovation Engine for maritime transportation ecosystem cybersecurity education, research, experimentation, investment, and commercialization of products with regional and national impacts.

Key Points

- Addresses cybersecurity challenges presented by the maritime transportation ecosystem of ports, ships, shipping lines, cargo, people, inland waterways and intermodal transfers.
- Focuses on solutions presented by advances in technology to understand the independencies, vulnerabilities and risks to develop solutions.
- Catalyzes long term industry and economic growth backed by public-private collaboration and promotes investment in key cybersecurity technologies.
- Seeks to actively recruit and include partners from marginalized groups, including women and persons of color.
- Creates and encourages a culture of innovation.

Partners

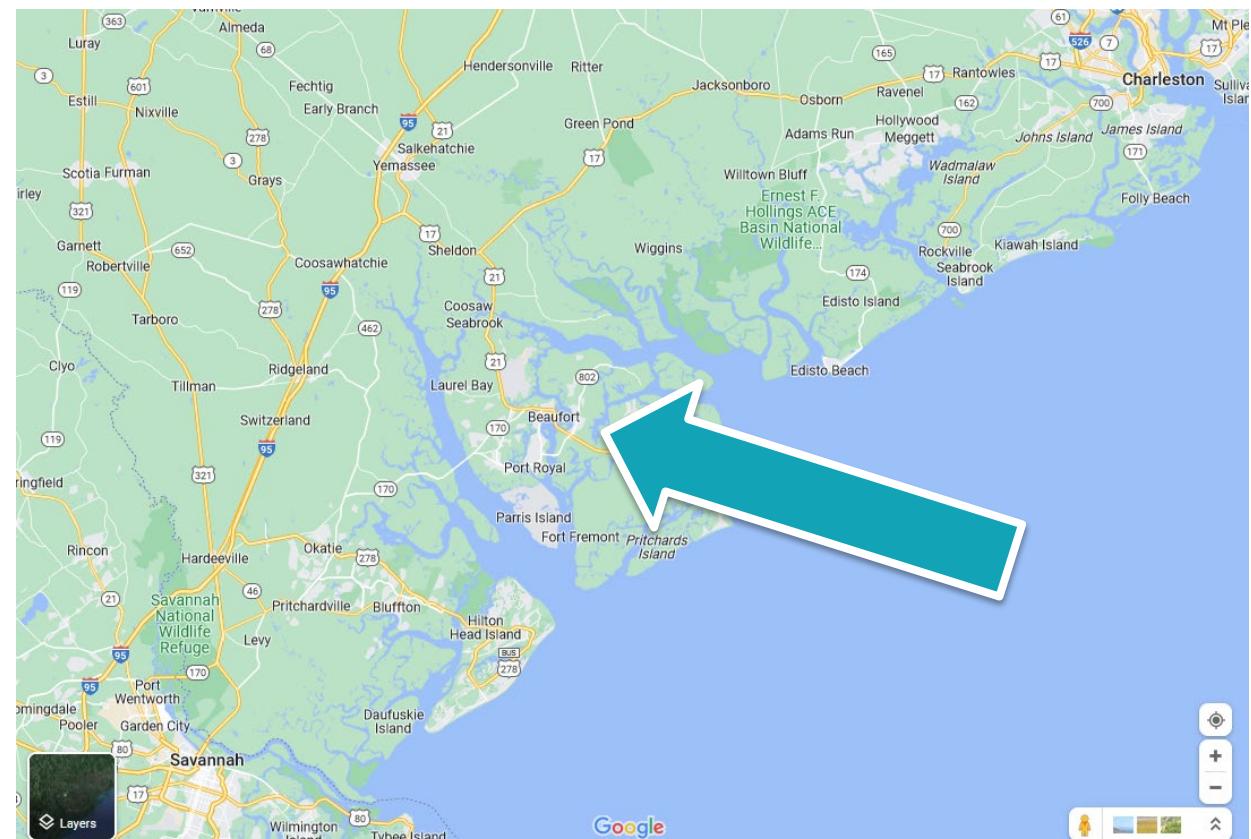
University of SC Beaufort; Clemson University; South Coast Cyber Center; The Citadel; South Carolina State University; SC Research Authority; SC Ports Authority; Palmetto Tech Bridge/Naval Information Warfare Center, Atlantic; SC Council on Competitiveness; SCCyber; University of SC (Columbia); Technical College of the Lowcountry; Savannah River National Laboratory; American Bureau of Shipping; Fathom5 LLC; Alerion Capital; and Material Capital Ventures.

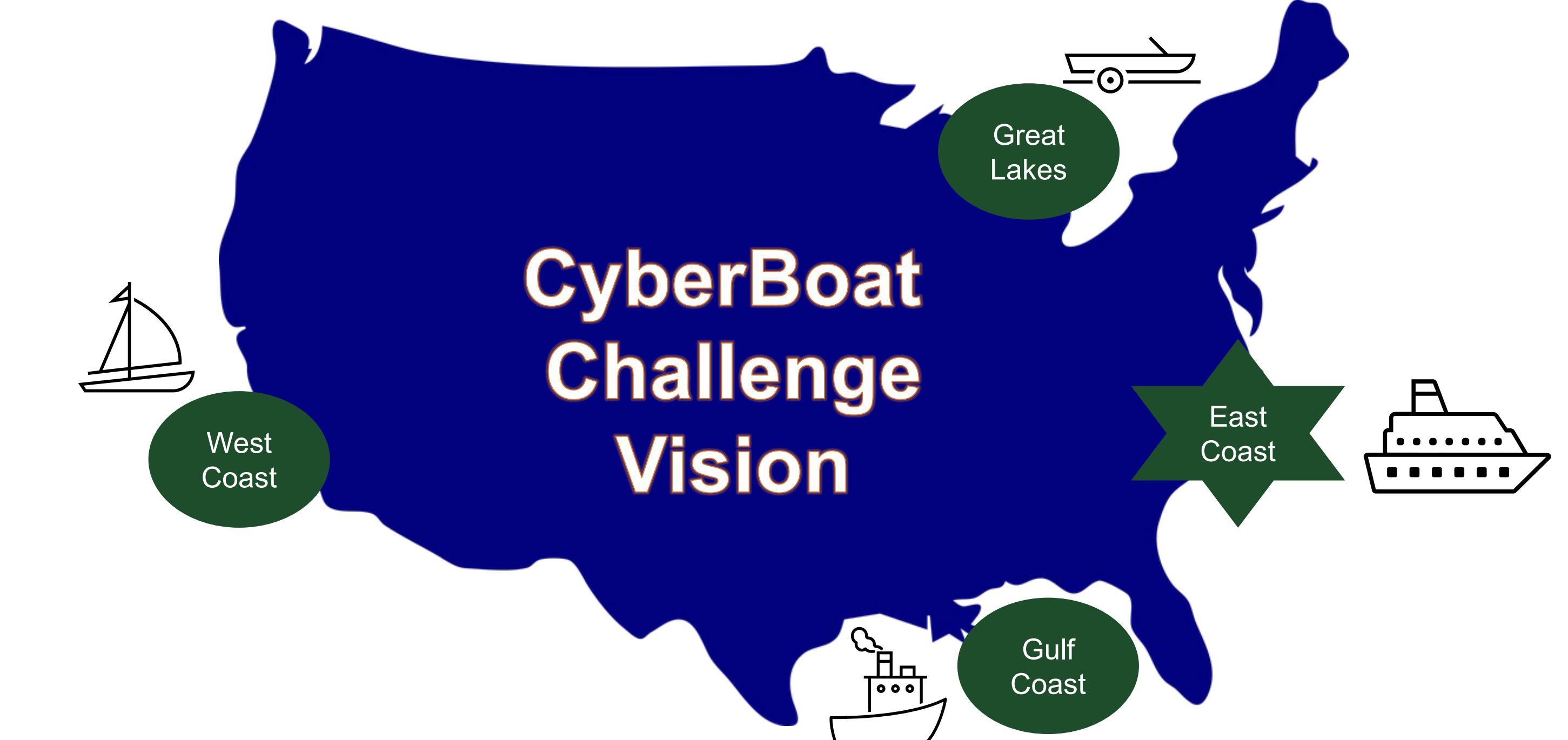
Background

The NSF Regional Innovation Engines program is a new initiative to fund integrated and comprehensive activities spanning user-inspired research, translation to practice, entrepreneurship and workforce development. The official name of USCB's award is "National Science Foundation South Coast Regional Innovation Engine: Cybersecurity Solutions for the Maritime Transportation Ecosystem."

The port and maritime transportation system in the U.S. represents 26% of the nation's economy. The US Coast Guard Cyber Strategy has stated: "A safe and secure maritime transportation system enhances America's competitiveness, advances trade, generates capital, grows our economy and strengthens our national security."

Initial Plans


Development of a strategic plan; workshops focused on high risk areas and gaps within maritime cybersecurity with academia, government, and private sector participation; tabletop exercises; and data gathering.


Contact

Rick Siebenaler, CEO
rasiebenaler@outlook.com
630-272-5500

Looking Forward

- University of South Carolina Beaufort will host the next CyberBoat Challenge at the South Coast Cyber Center
- CyberBoat Challenge will partner with the National Science Foundation Engine program in South Carolina
- Still need more industry support

CyberBoat Challenge Vision

Goal: Rotating regional events culminating with the CyberShip Challenge on a large vessel.

Save the Date: Cyber Boat Challenge September 25-29, 2024 Beaufort, South Carolina

www.cyberboatchallenge.net

Contacts:

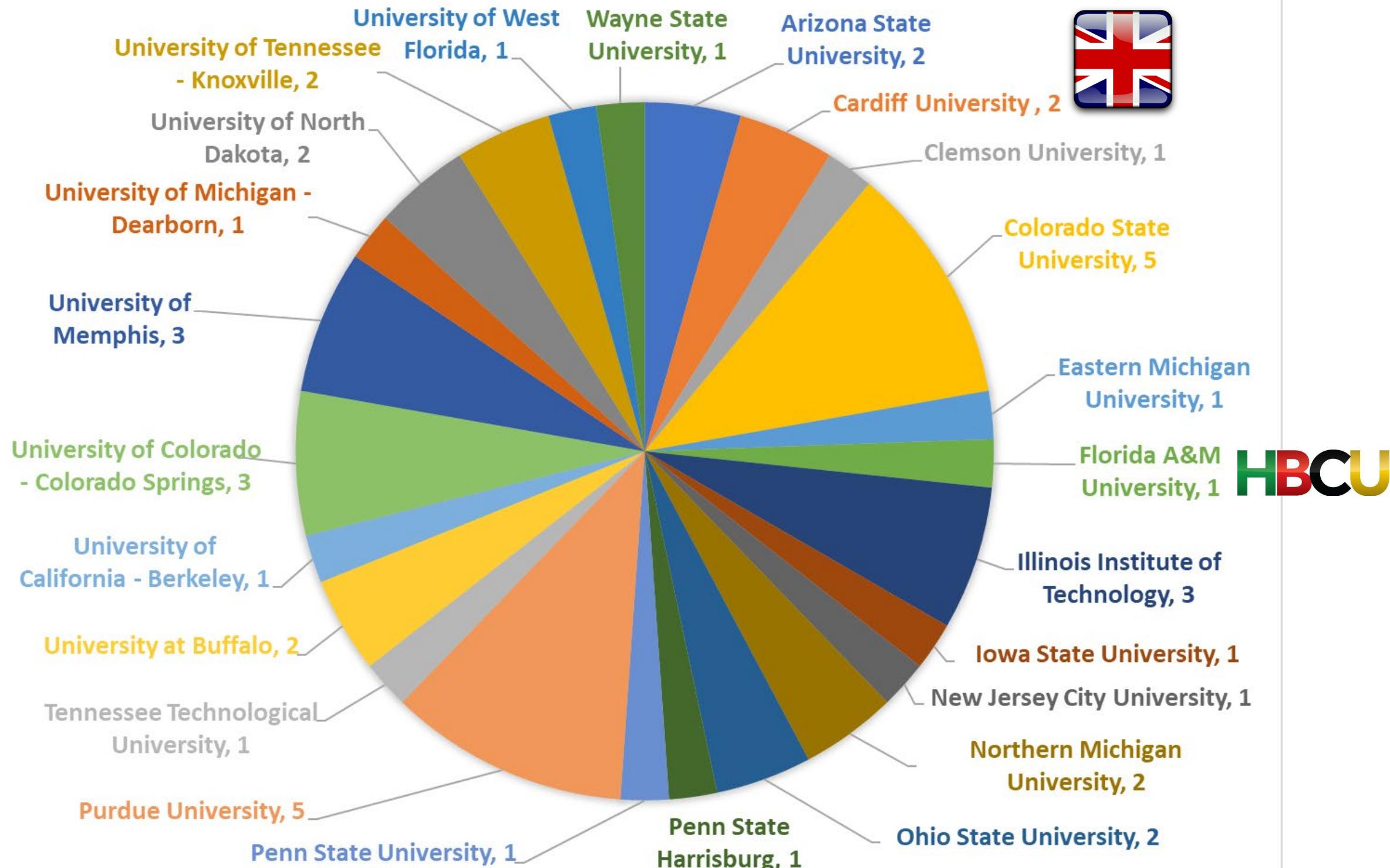
Jeremy Daily, Jeremy.Daily@colostate.edu
Karl Heimer, karl.heimer@outlook.com

Host Venue for 2024 Beaufort, SC

Airports in
Savannah, GA
and
Charleston,
SC can serve
Beaufort

CyberBoat and CyberTruck Challenge Comparison

Sister Cyber Challenge Events demonstrate successes in other domains.



CyberTruck Challenge Class of 2023
Macomb Community College, Warren, MI

CyberBoat Challenge Class of 2022

2023 CYBERTRUCK CHALLENGE: 45 STUDENTS FROM 24 UNIVERSITIES

CyberTruck Challenge 2023 Schedule

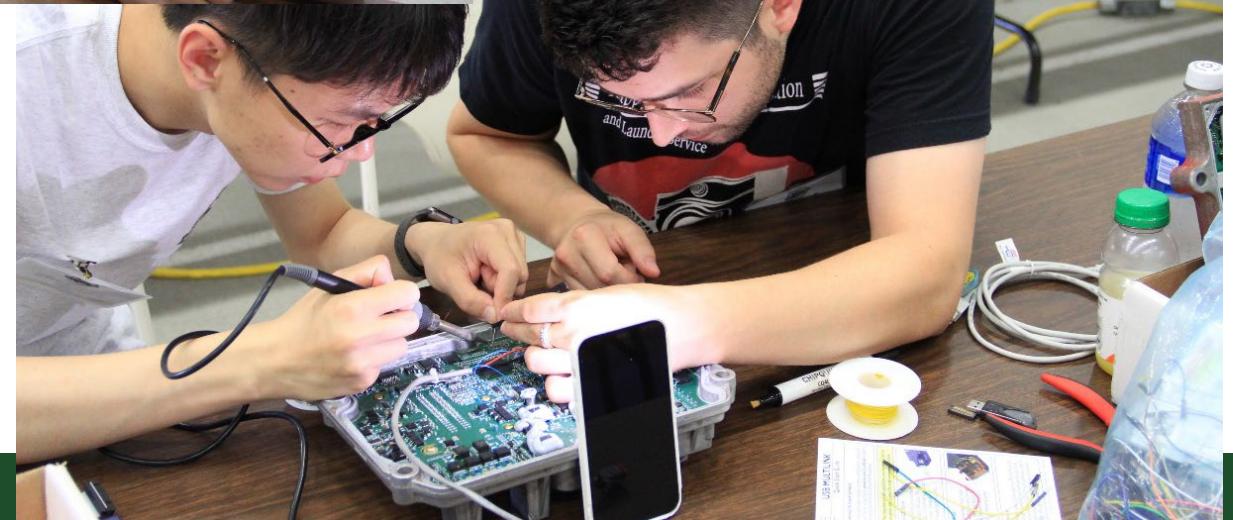
Version:20230516

	Sunday, 11 June	Monday, 12 June		Tuesday, 13 June		Wednesday, 14 June	Thursday, 15 June	Friday, 16 June	Time				
		Group A	Group B	Group A	Group B								
Before 0700	Site Closed	Site Closed				Site Closed							
0700-0730		Breakfast				Breakfast							
0730-0800		Welcome // NDA				Wireless Systems	<u>Hardware Reverse Engineering</u>	Safety & Legal Briefing	Assessment				
0800-0830		Vehicle Orientation											
0830-0900		<u>Software RE</u>	Truck Systems and J1939	Cryptography	<u>Binary Analysis and Modification</u>								
0900-0930													
0930-1000		Lunch				Lunch							
1000-1030		<u>Binary Decompilation</u>	Diagnostic Systems	Lunch	<u>Hardware Reverse Engineering</u>	Wireless Systems	Assessment	Assessment	Awards				
1030-1100													
1100-1130		Lunch				Cryptography	<u>Binary Analysis and Modification</u>	Assessment	Assessment				
1130-1200		Truck Systems and J1939	<u>Software RE</u>										
1200-1230			Diagnostic Systems	<u>Binary Decompilation</u>									
1230-1300		Lunch											
1300-1330		Lunch				Assessment	Assessment	Assessment	Assessment				
1330-1400		<u>Binary Decompilation</u>	Diagnostic Systems	Lunch	<u>Hardware Reverse Engineering</u>								
1400-1430													
1430-1500		Lunch				Wireless Systems	Assessment	Assessment	Assessment				
1500-1530		Lunch											
1530-1600		Lunch				Cryptography	<u>Binary Analysis and Modification</u>	Assessment	Assessment				
1600-1630		Lunch											
1630-1700		Lunch				Assessment	Assessment	Assessment	Assessment				
1700-1730		Lunch											
1730-1800		Lunch				Assessment	Assessment	Assessment	Assessment				
1800-1830		Lunch											
1830-1900		Lunch				Assessment	Assessment	Assessment	Assessment				
1900-1930		Lunch											
1930-2000		Dinner				Assessment	Assessment	Assessment	Assessment				
2000-2030		Dinner											
2030-2100		Dinner				Assessment	Assessment	Assessment	Assessment				
2100-2130		Dinner											
2130-2200		Dinner				Assessment	Assessment	Assessment	Assessment				
After 2200		Dinner											

Snacks will be served each afternoon.

*Survey

*Survey



Recall, the CyberBoat Challenge was 2.5 days.

Legend


Lecture / Demo	All participants
<u>Freightliner Side</u>	Interactive lecture and activities
Cummins Side	Interactive lecture and activities
Meals	Meals will be catered on-site
"Hacking"	On vehicle assessments
Free	Can hack, study, rest, leave, etc.
Site Closed	No access the facility
Off Site	Limelight Grill on VanDyke Ave

Topic	Instructor, Affiliation	Verified
Welcome and Review	Karl Heimer [MEDC] & Sponsor Representatives	Yes
Wireless Systems	Daniel Salloum [Assured Information Security]	Yes
Binary Analysis and Modification	Edward Larson, Wyatt Ford [Red Balloon Security]	Yes
Binary Decompilation	Fish Wang [Arizona State University]	Yes
Software Reverse Engineering	Matt Carpenter, Erin Cornelius [GRIMM]	Yes
Truck Systems and J1939	Jeremy Daily [Colorado State University]	Yes
Hardware Reverse Engineering	Bill Hass [Self]	Yes
Cryptography	Ben Gardiner [NMFTA]	Yes
Diagnostic Systems	Sharika Kumar [Cummins, Inc]	Yes
Trucking Industry	Urban Jonson [Serjon]	Yes

Assessment Period: Applying the hands-on lecture content

Assessment Period: Students Explore with Mentors

42

Thank you to the CyberTruck Challenge® sponsors

Premier Sponsor

Platinum Sponsors

Gold Sponsors

Silver Sponsors

Bronze Sponsors

SYSTEMS ENGINEERING
COLORADO STATE UNIVERSITY

Contributors

It can be done

Warren Michigan, 12-16 June 2023.

The CyberBoat
Challenge needs
sponsorship.

J1939 Security Challenges

NMEA 2000 security depends on J1939 security.

Most hacks on truck have an analog in maritime.

Image credit: DALL-E

Mandatory Electronic Logging Devices (ELDs)

Security vulnerabilities affecting trucks on the road.

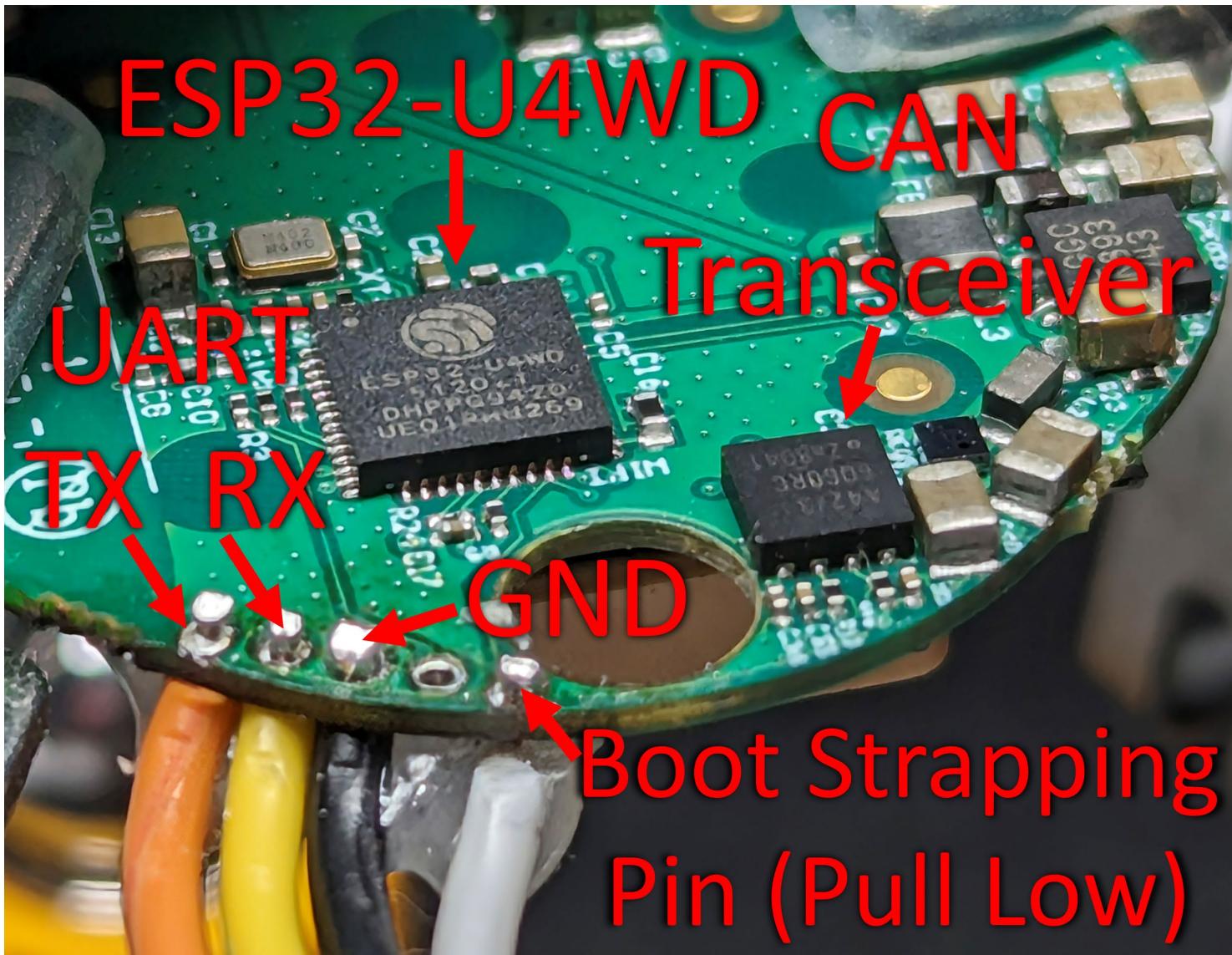
SUMMARY: The Federal Motor Carrier Safety Administration (FMCSA) amends the Federal Motor Carrier Safety Regulations (FMCSRs) to establish: Minimum performance and design standards for hours-of-service (HOS) electronic logging devices (ELDs); requirements for the mandatory use of these devices by drivers currently required to prepare HOS records of duty status (RODS); requirements concerning HOS supporting documents; and measures to address concerns about harassment resulting from the mandatory use of ELDs. The requirements for ELDs will improve compliance with the HOS rules.

DATES: *Effective Date:* February 16, 2016.
Compliance Date: December 18, 2017.

Mandated Technology

- The “ELD Mandate” requires truckers to connect to the engine and capture Hours of Service.
- The impact to vehicle cybersecurity was not discussed in the mandate.

*DALL-E/Photoshop
ELD shown*


Emergent Behavior

- System Composed of Truck and ELD
 - Heavy truck: dynamic operational platform with mechanical and electronic components
 - ELD: electronic vehicle attachment mandated for data logging, regulatory compliance.
- Integration:
 - *Could* enhance operational capabilities
 - Widens attack surface / introduces new threat vectors
 - *Could* introduce potential vulnerabilities

Maritime equivalent: remote bilge monitoring

Device Analysis

- Acquired popular ELDs from popular Ecommerce site for analysis
 - All small, handheld devices
 - Connects to vehicles diagnostic port
- Quickly became apparent that multiple ELDs were clones with minimal changes
 - Same device sold by 50+ brands
 - Wireless networks not rebranded
 - Uncovered that this is commonplace in the ELD industry
- Manuals indicates:
 - Bluetooth Low Energy (BLE) and GPS connectivity
 - Companion app for data logging, monitoring, diagnostics, etc.
- Discovered password protected Wi-Fi network, not stated in manual

Booting ... version %s (IDF %s) [reset cause %u
 Debug
 Upgrade
 Data
 BTLE
 Socket
 Analog

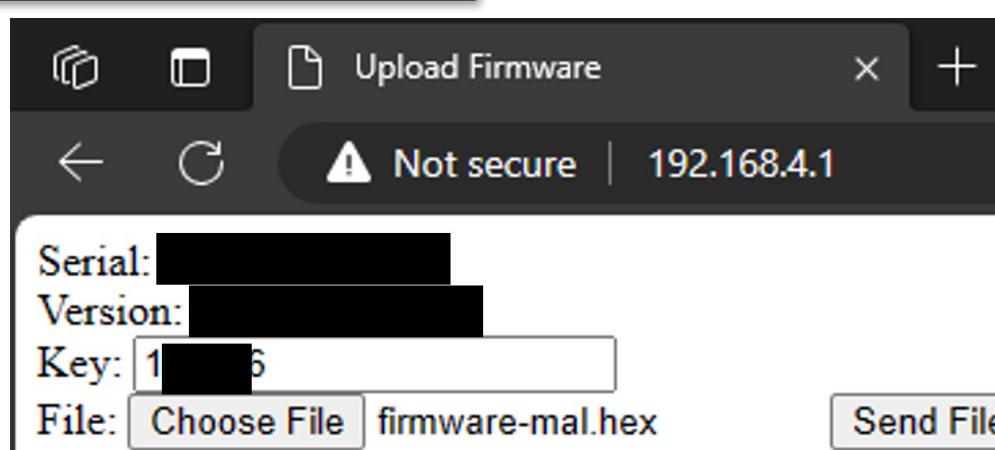
SSID Format
 WIFI Password

Created SSID: %s
 ELD: %02X%02X%02X%02X%02X%02X
 d [] 7
 ELD
 About to connect
 @ []

POST /upload.php HTTP
 Suspending tasks ...
 Starting OTA ...
 upgrade
 E (%d) %s: OTA END: %u
 E (%d) %s: Boot partition activated: %s
 E (%d) %s: Failed to activate boot partition
 Flash Successful! %lu.%02lu seconds
 Upload Firmware
 Flash success and closing socket
 Error flashing! Code %u [%u]
 Flash error and closing socket
 RESETTING
 GET / HTTP
<html><head><title>Upload Firmware</title></head><form enctype="multipart/form-data" action=<?php echo \$_POST['url']; ?><input type="text" name="key" value="123456"><input type="file" name="fw"><input type="submit" value="Send File"></form>
Buffer: %ld,%u,%u,%u</body></html>

Upload Key

Upload Endpoint


Webserver IP

SSID: %s
 Pass: %s

Skipping backup due to no vehicle connection
 Found flash save partition with good signature
 RBT_READ: failed @ %06lx → %02X ≠ %02X [%lu]

Version: %s (%s)

 Key: <input name="key" type="text">

 File: <input name="fw" type="file">
<input type="submit" value="Send File">
</form>
Buffer: %ld,%u,%u,%u</body></html>

Upload Key
 Input

Technical Inspection

- Firmware Extraction & Acquisition:
 - Utilized ESPTool.py for firmware extraction via serial to USB on the ELD's programming port
 - Discovered credentials and endpoints using GNU strings command
 - Obtained newer firmware from update servers by reverse engineering mobile apps with JADX
- Employed Ghidra with ESP32 plugins for analysis
- Default Wi-Fi credentials easily accessible online
- Using default Wi-Fi credentials mapped Wi-Fi network using Nmap to identify open ports and associated services
 - Service on port 22
 - Telnet on port 23
 - HTTP server on port 80

Vulnerabilities

- Default Network Security Weaknesses:
 - Hardcoded weak password
 - Unnecessary simultaneous use of Wi-Fi & BLE
 - Simultaneous client and access point (Wormable)
- Web Server & OTA Updates:
 - Default-enabled web server, seemingly unused by resellers
 - OTA update mechanism with a weak password
 - Firmware update not signed
 - Downgrade attack susceptible
- Debugging & APIs:
 - Unnecessary debug thread open on port 22
 - Unauthenticated Telnet API (port 23) and BLE exposing critical device control, including arbitrary CAN message handling and OTA updates, without security measures.
 - While API provides the ability to configure the device to a more secure state, we did not find it used by the reseller applications we examined

```
43 ble_message = strncmp((char *)recv_message, "0x0000000000000000", 16);
44 if (ble_message == 0) {
45     puVar7 = &command_handle_output;
46     bus = 0x6a4;
47     pcVar6 = "Dbg";
48     pcVar5 = dbg_thread;
49 LAB_401162c6:
50     xTaskCreatePinnedToCore(pcVar5, pcVar6, bus, puVar7, 5, 0, 1);
51     return (int *)0x1;
52 }
53                                     command might start a thread to stream back data */
54 ble_message = strncmp((char *)recv_message, "0x0000000000000000", 16);
55 cmd_parameter = baud_rate_1;
56 if (ble_message == 0) {
57     memw();
```

~ Code for other Commands ~

```
586     if ( ) {  
587         ;  
588     if ( ) {  
589         if ( ) {  
590             if ( ) {  
591                 if ( ) {  
592                     if ( ) {  
593                         return recvd_message;  
594                     }  
595                 if (first_char != 6) {  
596                     if ( ) {  
597                         if ( ) {  
598                             if ( ) {  
599                             }  
600                         if ( ) {  
601                             if ( ) {  
602                                 if ( ) {  
603                                     if ( ) {  
604                                         if ( ) {  
605                                             if ( ) {  
606                                                 if ( ) {  
607                                                     if ( ) {  
608                                                         if ( ) {  
609                                                             if ( ) {  
610                                                                 if ( ) {  
611                                                                     if ( ) {  
612                         }  
613                     }  
614                 }  
615             }  
616         }  
617     }  
618 }
```

~ Code for other CAN Bus Channels ~

```
679     debug_printf("CAN1: Requesting @%08IX %u bytes\r\n",id,length);
680     bus = 0;
681 }
682 send_can sends the message to the CAN bus
683 send_can(bus,id,0,0,0,0,length,&can_data,0,0,100,&command_handle_output,0);
684 return (int *)0x64;
```


Connecting to Trucks at a Truck Stop

Commercial Vehicle Electronic Logging Device Security: Unmasking the Risk of Truck-to-Truck Cyber Worms

Jake Jepson
Colorado State University
jepson2k@rams.colostate.edu

Rik Chatterjee
Colorado State University
rik.chatterjee@colostate.edu

Jeremy Daily
Colorado State University
jeremy.daily@colostate.edu

Abstract—In compliance with U.S. regulations, modern commercial trucks are required by law to be equipped with Electronic Logging Devices (ELDs), which have become potential cybersecurity threat vectors. Our research uncovers three critical vulnerabilities in commonly used ELDs.

First, we demonstrate that these devices can be wirelessly controlled to send arbitrary Controller Area Network (CAN) messages, enabling unauthorized control over vehicle systems. The second vulnerability demonstrates malicious firmware can be uploaded to these ELDs, allowing attackers to manipulate data and vehicle operations arbitrarily. The final vulnerability, and perhaps the most concerning, is the potential for a self-propagating truck-to-truck worm, which takes advantage of the inherent networked nature of these devices. Such an attack could lead to widespread disruptions in commercial fleets, with severe safety and operational implications. For the purpose of demonstration, bench level testing systems were utilized. Additional testing was conducted on a 2014 Kenworth T270 Class 6 research truck with a connected vulnerable ELD.

These findings highlight an urgent need to improve the security posture in ELD systems. Following some existing best practices and adhering to known requirements can greatly improve the security of these systems. The process of discovering the vulnerabilities and exploiting them is explained in detail. Product designers, programmers, engineers, and consumers should use this information to raise awareness of these vulnerabilities and encourage the development of safer devices that connect to vehicular networks.

I. INTRODUCTION

Results

Coordinated Disclosure with Cybersecurity and Infrastructure Security Agency (CISA), Department of Homeland Security

Vendor has developed a patch to address the security issues

Best Paper Runner-Up at the VehicleSec '24 Symposium

Best Demo at the VehicleSec '24 Symposium, Feb 26, 2024

Viral News Coverage

Mandated technology without security requirements will likely lead to exploitable vulnerabilities.

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
<https://dx.doi.org/10.14722/vehiclesec.2024.23047>
www.ndss-symposium.org

Responsible Disclosure

3.2.3 DOWNLOAD OF CODE WITHOUT INTEGRITY CHECK CWE-494²

IO-1020 Micro ELD downloads source code or an executable from an adjacent location and executes the code without sufficiently verifying the origin or integrity of the code.

[CVE-2024-28878](#) has been assigned to this vulnerability. A CVSS v3.1 base score of 9.6 has been calculated; the CVSS vector string is ([AV:A/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H²](#)).

A CVSS v4 score has also been calculated for [CVE-2024-28878](#). A base score of 9.4 has been calculated; the CVSS vector string is ([CVSS4.0/AV:A/AC:L/AT:N/PR:N/UI:N/VC:H/VI:H/VA:H/SC:H/SI:H/SA:H²](#)).

https://www.cisa.gov/news-events/ics-advisories/icsa-24-093-01
An official website of the United States government [Here's how you know](#) ▾

#PROTECT2024 SECURE OUR WORLD SHIELDS UP

CYBERSECURITY & INFRASTRUCTURE SECURITY AGENCY **AMERICA'S CYBER DEFENSE AGENCY**

Topics ▾ Spotlight Resources & Tools ▾ News & Events ▾ Careers ▾ About ▾

[Home](#) / [News & Events](#) / [Cybersecurity Advisories](#) / [ICS Advisory](#)

ICS ADVISORY

IOSIX IO-1020 Micro ELD

Release Date: April 02, 2024 **Alert Code:** ICSA-24-093-01

View CSAF²

Commercial Vehicle Electronic Logging Device Security: Unmasking the Risk of Truck-to-Truck Cyber Worms (Long)

Jake Jepson, Rik Chatterjee, Jeremy Daily (Colorado State University)

ETAS Best Paper Award Runner-up

In compliance with U.S. regulations, modern commercial trucks are required by law to be equipped with Electronic Logging Devices (ELDs), which have become potential cybersecurity threat vectors. Our research uncovers three critical vulnerabilities in commonly used ELDs.

First, we demonstrate that these devices can be wirelessly controlled to send arbitrary Controller Area Network (CAN) messages, enabling unauthorized control over vehicle systems. The second vulnerability demonstrates malicious firmware can be uploaded to these ELDs, allowing attackers to manipulate data and vehicle operations arbitrarily. The final vulnerability, and perhaps the most concerning, is the potential for a selfpropagating truck-to-truck worm, which takes advantage of the inherent networked nature of these devices. Such an attack could lead to widespread disruptions in commercial fleets, with severe safety and operational implications. For the purpose of demonstration, bench level testing systems were utilized. Additional testing was conducted on a 2014 Kenworth T270 Class 6 research truck with a connected vulnerable ELD.

COLORADO STATE UNIVERSITY

WALTER SCOTT, JR. COLLEGE OF ENGINEERING

SOURCE
Friday, March 22

College News

CSU Magazines ▾

Latest Headlines

Students

Research

Events

Engineering Community

Suggest a Story

College Website

Researchers highlight potential cybersecurity threats to trucking industry, supply chain

19

Mar, 2024

By [Josh Rhoten](#)

VENDOR VOICE

The Register

SPONSORED BY:

aws

MOVE TOWARDS A NEW HORIZON IN CLOUD COMPUTING

Join millions of customers in using AWS to lower costs, become more agile, and innovate faster.

Start now

SECURITY

Truck-to-truck worm could infect – and disrupt – entire US commercial fleet

73

The device that makes it possible is required in all American big rigs, and has poor security

 [Jessica Lyons](#)

Fri 22 Mar 2024 // 00:03 UTC

Vulnerabilities in common Electronic Logging Devices (ELDs) required in US commercial trucks could be present in over 14 million medium- and heavy-duty rigs, according to boffins at Colorado State University.

In a paper presented at the 2024 Network and Distributed System Security Symposium, associate professor Jeremy Daily and systems engineering graduate students Jake Jepson and Rik Chatterjee demonstrated how ELDs can be accessed over Bluetooth or Wi-Fi connections to take control of a truck, manipulate data, and spread malware between vehicles.

https://www.freightwaves.com/news/truck-to-truck-worms-introduced-via-elds-could-threaten-major-fleet-disruption

FREIGHTWAVES
The Nerve Center of the Global Supply Chain

READ ▾ WATCH ▾ LISTEN NEWSLETTERS ▾ SONAR ▾ EVENTS ▾ DISCOVER ▾ RESOURCES ▾ ABOUT US ▾ FW ESPAÑOL AIR CARGO • Watch Now Q

Home / News / 'Truck-to-truck worms' introduced via ELDs could threaten major fleet disruption

News

'Truck-to-truck worms' introduced via ELDs could threaten major fleet disruption

Colorado State researchers call ELDs 'potential cybersecurity threat vectors'

Brinley Hineman • Friday, March 22, 2024

WATCH FWTV IN HD

40% MORE GO FOR YOUR CARGO.
More planes and new freighters add a ton more capacity.
[Book Now »](#)

Alaska AIR CARGO

Fuelman Looking to save more on

Solve real business challenges on Google Cloud and run workloads for free. For Slashdot users: [Get \\$300 in free credits](#) to fully explore Google Cloud. Get started for free today.

Check out the new Slashdot job board to browse remote jobs or jobs in your area.

Truck-To-Truck Worm Could Infect Entire US Fleet (theregister.com)

Posted by BeauHD on Saturday March 23, 2024 @06:00AM from the poor-security dept.

23

Jessica Lyons reports via The Register:

Vulnerabilities in common Electronic Logging Devices (ELDs) required in US commercial trucks [could be present in over 14 million medium- and heavy-duty rigs](#), according to boffins at Colorado State University. In a paper presented at the 2024 Network and Distributed System Security Symposium, associate professor Jeremy Daily and systems engineering graduate students Jake Jepson and Rik Chatterjee demonstrated how ELDs can be accessed over Bluetooth or Wi-Fi connections to take control of a truck, manipulate data, and spread malware between vehicles. "These findings highlight an urgent need to improve the security posture in ELD systems," the trio [wrote](#) [PDF].

The authors did not specify brands or models of ELDs that are vulnerable to the security flaws they highlight in the paper. But they do note there's not too much diversity of products on the market. While there are some 880 devices registered, "only a few tens of distinct ELD models" have hit the road in commercial trucks. A federal mandate requires most heavy-duty trucks to be equipped with ELDs, which track driving hours. These systems also log data on engine operation, vehicle movement and distances driven -- but they aren't required to have tested safety controls built in. And according to the researchers, they can be wirelessly manipulated by another car on the road to, for example, force a truck to pull over.

The academics pointed out three vulnerabilities in ELDs. They used bench level testing systems for the demo, as well as additional testing on a moving 2014 Kenworth T270 Class 6 research truck equipped with a vulnerable ELD. [...] For one of the attacks, the boffins showed how anyone within wireless range could use the device's Wi-Fi and Bluetooth radios to send an arbitrary CAN message that could disrupt some of the vehicle's systems. A second attack scenario, which also required the attacker to be within wireless range, involved connecting to the device and uploading malicious firmware to manipulate data and vehicle operations. Finally, in what the authors described as the "most concerning" scenario, they uploaded a truck-to-truck worm. The worm uses the compromised device's Wi-Fi capabilities to search for other vulnerable ELDs nearby. After finding the right ELDs, the worm uses default credentials to establish a connection, drops its malicious code on the next ELD, overwrites existing firmware, and then starts the process over again, scanning for additional devices. "Such an attack could lead to widespread disruptions in commercial fleets, with severe safety and operational implications," the researchers warned.

Simply Powerful
Maintenance
Management Software

CMMS helps you
Schedule and Track
everything in your
facility

Learn More

Malware targeting ELDs could allow hackers to take control of semi trucks, researchers say

We're flash the electronic device,

This Week in Trucking

One of the top recognized fleets is looking for top notch drivers

SPONSORED CONTENT | March 18, 2024

Turkey strike causes semi crash, sends trucker to the hospital

TRUCKING NEWS | March 18, 2024

Shipping container falls off trailer, injuring two

TRUCKING NEWS | March 18, 2024

Missing trucker's big rig abandoned at Tennessee truck

FREIGHTWAVES

'Truck-to-truck worms' introduced via ELDs could threaten major fleet disruption

Brinley Hineman

Fri, Mar 22, 2024, 1:57 PM MDT • 2 min read

Quote Lookup

U.S. markets closed

Customize Your Dock

MARKETS

US Europe Asia Rates Comm

S&P 500

5,234.18

Dow 30

39,475.90

-7.35 (-0.14%)

-305.47 (-0.77%)

Nasdaq

16,428.82

Russell 2000

2,072.00

+26.98 (+0.16%)

-26.56 (-1.27%)

Crude Oil

80.82

Gold

2,166.50

-0.25 (-0.31%)

-18.20 (-0.83%)

MY PORTFOLIOS

Sign in to create a watchlist

Sign in

the yodel

Filtered

Everything

News

Podcasts

Videos

Search...

ALL INFOSEC NEWS

Truck-to-truck worm could infect – and disrupt – entire US commercial fleet

Copy link

Add to bookmarks

March 22, 2024, 12:03 a.m. | Jessica Lyons
The Register - Security www.theregister.com

The device that makes it possible is required in all American big rigs, and has poor security

Vulnerabilities in common Electronic Logging Devices (ELDs) required in US commercial trucks could be present in over 14 million medium- and heavy-duty rigs, according to boffins at Colorado State University....

[AMERICAN](#) [BIG](#) [COLORADO](#) [COMMERCIAL](#) [DEVICE](#) [DEVICES](#) [DISRUPT](#) [FLEET](#) [INFECT](#) [LOGGING](#) [MEDIUM](#) [POOR](#) [SECURITY](#) [STATE](#) [UNIVERSITY](#) [VULNERABILITIES](#) [WORM](#)

[Visit resource](#)

More from www.theregister.com / The Register - Security

Russia's Cozy Bear caught phishing German politicos with phony dinner invites

7 hours ago | www.theregister.com

[BEAR](#) [CAMPAIGN](#) [CAUGHT](#) [COZY BEAR](#) [+10](#)

Chinese snoops use F5, ConnectWise bugs to sell access to top US, UK networks

17 hours ago | www.theregister.com

[ACCESS](#) [BEIJING](#) [BUGS](#) [CHINESE](#) [+ 20](#)

3 million doors open to uninvited guests in keycard exploit

22 hours ago | www.theregister.com

Unmasking the Risk of Truck-to-X + <https://www.youtube.com/watch?v=SwtTzk9ys20>

Search

 Sign in

Unmasking the Risk of Truck-to-Truck Cyber Worms

Walter Scott, Jr. College of Engineering

391 subscribers

Subscribe

Like 9

Dislike

Share

Save

1K views 3 days ago #cybersecurity #hacking #coloradostate

The Cameraman Wasn't Prepared

Beach photos worth a thousand words

Sponsored · TheFunPost

Visit site

THE DRYWALL KILLER

20:48

It's Been a Good Run, Drywall.

LRN2DIY

1.9M views · 2 weeks ago

This Is Why We Don't Toss Out Broken Microwaves | Remake...

Totally Handy
14M views · 1 year ago

HOW DOES THIS WORK?
13:41

The Most MISUNDERSTOOD Feature On Your Drill

LRN2DIY
2.3M views · 1 month ago

When Did Raspberry Pi become the villain?
Jeff Geerling
1.1M views · 2 months ago

When Did Raspberry Pi become the villain?

Jeff Geerling
1.1M views · 2 months ago

This Car Travels Farther Than You Push It
Tom Stanton
1.2M views · 7 days ago

This Car Travels Farther Than You Push It

Tom Stanton
1.2M views · 7 days ago

Starship Reached Space. What Now?

Security News > 2024 > March > Truck-to-truck worm could infect - and disrupt - entire US commercial fleet

2024-03-22 00:03

While there are some 880 devices registered, "Only a few tens of distinct ELD models" have hit the road in commercial trucks.

They used bench level testing systems for the demo, as well as additional testing on a moving 2014 Kenworth T270 Class 6 research truck equipped with a vulnerable ELD. "In our evaluation of ELD units procured from various resellers, we discovered that they are distributed with factory default firmware settings that present considerable security risks," the authors noted.

The worm uses the compromised device's Wi-Fi capabilities to search for other vulnerable ELDs nearby.

After finding the right ELDs, the worm uses default credentials to establish a connection, drops its malicious code on the next ELD, overwrites existing firmware, and then starts the process over again, scanning for additional devices.

While both vehicles were in motion, in just 14 seconds the team connected to the truck's Wi-Fi, used the ELD's interface to re-flash the device, and started sending malicious messages causing the truck to slow down.

According to Jepson, the researchers disclosed the flaws to the ELD manufacturers and the US Cybersecurity and Infrastructure Security Agency before publishing the paper.

News URL

https://go.theregister.com/feed/www.theregister.com/2024/03/22/boffins_tucktotruck_worm/

#US #worm

[Home](#) > [Tools](#) > [News](#) > [Truck To Truck Worm Could Infect – And Disrupt – Entire US Commercial Fleet](#)

Truck-to-truck worm could infect – and disrupt – entire US commercial fleet

Mar 21, 2024 at 09:12 PM CST

Vulnerabilities in common Electronic Logging Devices (ELDs) required in US commercial trucks could be present in over 14 million medium- and heavy-duty rigs, according to boffins at Colorado State University.

Truck-to-truck worm could infect entire US commercial fleet

https://www.reddit.com/r/technology/comments/1bku9ib/trucktotruck_worm_could_infect_and_disrupt_entire/

Reddit

Home Popular

TOPICS

- Gaming
- Sports
- Business
- Crypto
- Television
- Celebrity

See more

RESOURCES

- About Reddit
- Advertise
- Help
- Blog
- Careers
- Press

Search in r/technology

r/technology • 1 day ago

Loki-L

Truck-to-truck worm could infect – and disrupt – entire US commercial fleet

Security

theresregister.com

Open

487 69 Share

Sign in with Google

Use your Google Account to sign in to Reddit

No more passwords to remember. Signing in is fast, simple and secure.

Continue

Related Technology

r/news

FDA approves Wegovy for lowering heart attack and stroke risk in overweight patients

2K upvotes · 350 comments

r/movies

What film would you LIKE to see a remake of?

73 upvotes · 474 comments

r/news

Navalny's mother says she has been shown his body

6.4K upvotes · 233 comments

BREAKING

r/videos

do you know who my dad is? [Almost Friday TV]

216 upvotes · 23 comments

youtube

https://www.theresregister.com/2024/03/22/boffins_trucktotruck_worm/

u/*polhold04107 • Promoted

Truck-to-truck worm could infect entire US commercial fleet

<https://www.msn.com/en-us/news/technology/truck-to-truck-worm-could-infect-and-disrupt-entire-us-commercial-fleet/ar-BB1kjHbS>

Microsoft Start

Search the web

Sign in

Discover Following News US News World News Local Science Technology Crime Politics Entertainment Lifestyle Food & Drink Personalize

Flight Mode on. Lufthansa Ad

The Register + Follow 7.3K Followers

322

Truck-to-truck worm could infect – and disrupt – entire US commercial fleet

Story by Jessica Lyons • 1d • 3 min read

113

Scotts Turf Builder WinterGuard Fall Lawn Food

5 11,798 Shop now

Visit The Register

Flox rocks the Nix box by conquering code chaos

Russia's Cozy Bear caught phishing German politicos with...

Apple iPhone AI to be powered by Baidu in China, maybe

Truck-to-truck worm could infect + <https://upstract.com/x/c3ce6cd77a9a0131>

https://upstract.com/x/c3ce6cd77a9a0131

UPSTRACT

Truck-to-truck worm could infect – and disrupt

theresister.com/2024/03/22/boffins_tucktotruck_worm

Source: theresister.com

Vulnerabilities in common Electronic Logging Devices (ELDs) required in US commercial trucks could be present in over 14 million medium- and heavy-duty rigs, according to boffins at Colorado State University. In a paper presented at the 2024 Network and Distributed System Security Symposium, associate professor Jeremy Daily and systems engineering graduate students Jake...

#JEREMYDAILY #JAKEJEPSON #RIKCHATTERJEE #ELD #PDF #880 #API #WIFISERVICE

Read the Entire Internet on a Single Page. Join Now →

This story appeared on theresister.com 2024-03-22

Truck-to-truck worm could infect

<https://www.thetruckersreport.com/truckingindustryforum/threads/truck-to-truck-worm-could-infect-and-disrupt-entire-us-commercial-fleet.2504669/>

FORUMS TRUCKING JOBS TRUCK GPS REVIEWS CDL PRACTICE TESTS SCHOOLS Log in or Sign up

Search Forums Recent Posts

TRUCKERS REPORT JOBS FIND TRUCKING JOBS Company Driver Dry Van Flatbed Refrigerated Specialized Owner Operator

More Trucking Job Searches

 Forums Ask An Owner Operator

Truck-to-truck worm could infect, and disrupt, entire US commercial fleet

Discussion in 'Ask An Owner Operator' started by Tarh331_Dad, Thursday at 8:44 PM.

Page 1 of 3 [1](#) [2](#) [3](#) [Next >](#)

Thursday at 8:44 PM

#1

Tarh331_Dad
Bobtail Member

47
54
Mar 29, 2020
0

Truck-to-truck worm could infect – and disrupt – entire US commercial fleet

https://www.theregister.com/2024/03/22/boffins_tucktotruck_worm/

Vulnerabilities in common Electronic Logging Devices (ELDs) required in US commercial trucks could be present in over 14 million medium- and heavy-duty rigs, according to boffins at Colorado State University.

In a paper presented at the 2024 Network and Distributed System Security Symposium, associate professor Jeremy Daily and systems engineering graduate students Jake Jepson and Rik Chatterjee demonstrated how ELDs can be accessed over Bluetooth or Wi-Fi connections to take control of a truck, manipulate data, and spread malware between vehicles.

"These findings highlight an urgent need to improve the security posture in ELD systems," the trio wrote...

Tarh331_Dad, Thursday at 8:44 PM

#1

Flat Earth Trucker and fordconvert Thank this.

[Skip to comments.](#)

Truck-to-truck worm could infect – and disrupt – entire US commercial fleet

[the register](#) ^

Posted on 3/21/2024, 6:31:42 PM by [algore](#)

Vulnerabilities in common Electronic Logging Devices (ELDs) required in US commercial trucks could be present in over 14 million medium- and heavy-duty rigs, according to boffins at Colorado State University.

In a paper presented at the 2024 Network and Distributed System Security Symposium, associate professor Jeremy Daily and systems engineering graduate students Jake Jepson and Rik Chatterjee demonstrated how ELDs can be accessed over Bluetooth or Wi-Fi connections to take control of a truck, manipulate data, and spread malware between vehicles.

"These findings highlight an urgent need to improve the security posture in ELD systems," the trio wrote [PDF].

The authors did not specify brands or models of ELDs that are vulnerable to the security flaws they highlight in the paper. But they do note there's not too much diversity of products on the market. While there are some 880 devices registered, "only a few tens of distinct ELD models" have hit the road in commercial trucks.

A federal mandate requires most heavy-duty trucks to be equipped with ELDs, which track driving hours. These systems also log data on engine operation, vehicle movement and distances driven – but they aren't required to have tested safety controls built in.

And according to the researchers, they can be wirelessly manipulated by another car on the road to, for example, force a truck to pull over.

The academics pointed out three vulnerabilities in ELDs. They used bench level testing systems for the demo, as well as additional testing on a moving 2014 Kenworth T270 Class 6 research truck equipped with a vulnerable ELD.

"In our evaluation of ELD units procured from various resellers, we discovered that they are distributed with factory default firmware settings that present considerable security risks," the authors noted.

This included an exposed API that permits over-the-air (OTA) updates. The devices also have Wi-Fi and Bluetooth enabled by default, with a "predictable" Bluetooth identifier and Wi-Fi Service Set Identifier (SSID) and weak default password. That makes it easy to connect to the device and then obtain network access to the rest of the vehicle's systems – at least for attackers within wireless range.

This can be achieved via a drive-by attack, or by hanging out at truck stops, rest stops, distribution centers, ports – basically anywhere that heavy-duty trucks tend to congregate.

The ELDs use a Controller Area Network (CAN) bus to communicate. For one of the attacks, the boffins showed how anyone within wireless range could use the device's Wi-Fi and Bluetooth radios to send an arbitrary CAN message that could disrupt of some of the vehicle's systems.

A second attack scenario, which also required the attacker to be within wireless range, involved connecting to the device and uploading malicious firmware to manipulate data and vehicle operations.

Finally, in what the authors described as the "most concerning" scenario, they uploaded a truck-to-truck worm. The worm uses the compromised device's Wi-Fi capabilities to search for other vulnerable ELDs nearby.

Here's how it knows the devices are vulnerable:

It specifically looks for devices with SSIDs starting with "VULNERABLE ELD:". Although this may sound contrived the SSID of the ELD we examined was predictable and could be used to identify the vulnerable devices.

Search

Sign in

Redefining CyberSecurity

With Sean Martin

0:00 / 48:26

On ITSPmagazine

Rolling Safely to Feed the Nation: The Cyber Frontline of Trucking Safety | A Conversation with C...

ITSPmagazine Podcast Network

3.9K subscribers

Subscribe

2

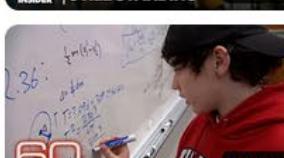
Share

Save

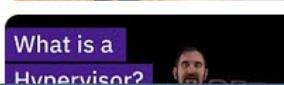
14 views 4 days ago Redefining CyberSecurity Podcast | Together with executives, lines of business owners, and practitioners, we are Redefining CyberSecurity.

Unveiling the Art of Possible: A Glimpse into RSA Conference...
ITSPmagazine Podcast Network
6 views • 4 days ago
New

11 Of The Most Faked Foods In The World | Big Business |...
Business Insider
14M views • 6 months ago


Meet a 12-year-old hacker and cyber security expert
CBS Mornings ✓
7.2M views • 5 years ago

You've Never Seen A Wheelchair Like This
Mark Rober ✓
11M views • 2 days ago
New


Only Five People Know The Secret To Making Zildjian's...
Business Insider
1M views • 3 months ago

Child prodigies and geniuses | 60 Minutes Full Episodes
60 Minutes ✓
4.1M views • 4 months ago

How Hidden Technology Transformed Bowling
Veritasium ✓
16M views • 2 years ago

What is a Hypervisor?
IBM Technology ✓

Colorado State Researchers Warn Millions Of US Commercial Trucks May Have ELD Vulnerabilities

The [Register \(UK\)](#) (3/22) reported vulnerabilities in “common Electronic Logging Devices (ELDs) required in US commercial trucks could be present in over 14 million medium- and heavy-duty rigs, according to boffins at Colorado State University.” In a paper presented “at the 2024 Network and Distributed System Security Symposium, associate professor Jeremy Daily and systems engineering graduate students Jake Jepson and Rik Chatterjee demonstrated how ELDs can be accessed over Bluetooth or Wi-Fi connections to take control of a truck, manipulate data, and spread malware between vehicles.” The authors did not “specify brands or models of ELDs that are vulnerable to the security flaws they highlight in the paper.” But they do “note there’s not too much diversity of products on the market.”

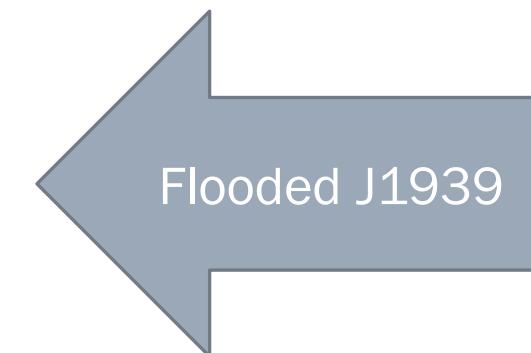
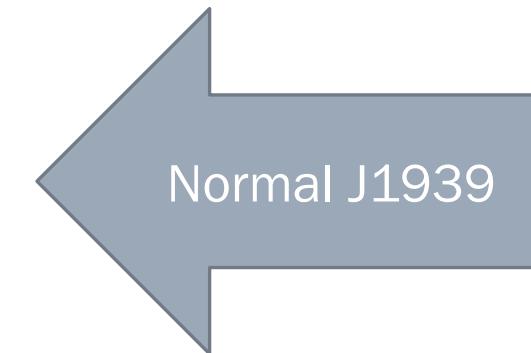
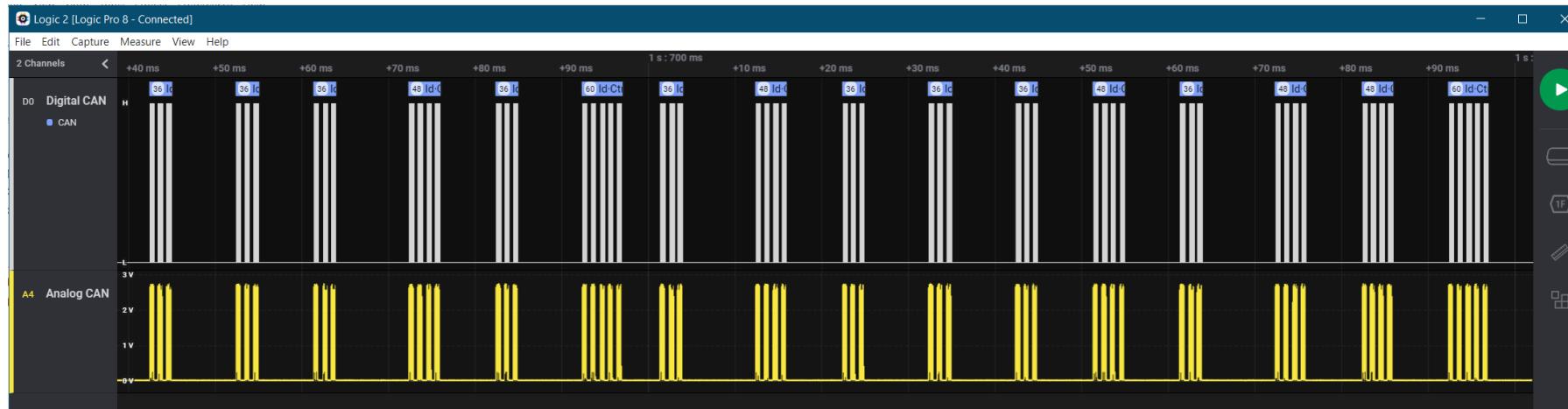
ASEE FIRST BELL

WEEKEND
EDITION

in affiliation with

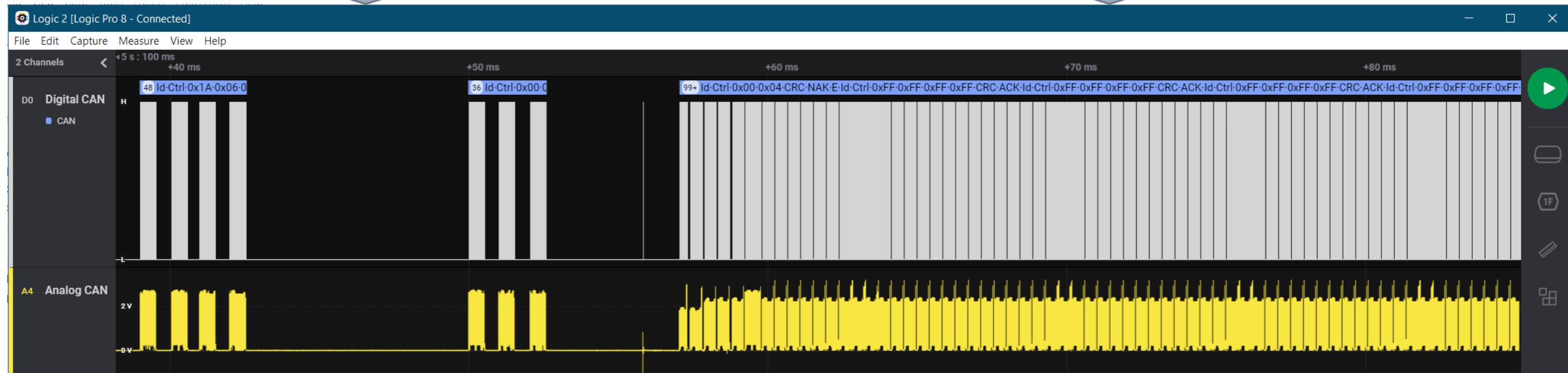
Today's engineering and technology news prepared exclusively for the engineering and technology community

Good morning




March 30, 2024

Other J1939/NMEA2000 Vulnerabilities

Denial Of Service



Spoofing Messages and Commands

Normal J1939

Spoofed J1939

J1939 Address Claim

Each controller application (node) on the network should have its own source address.

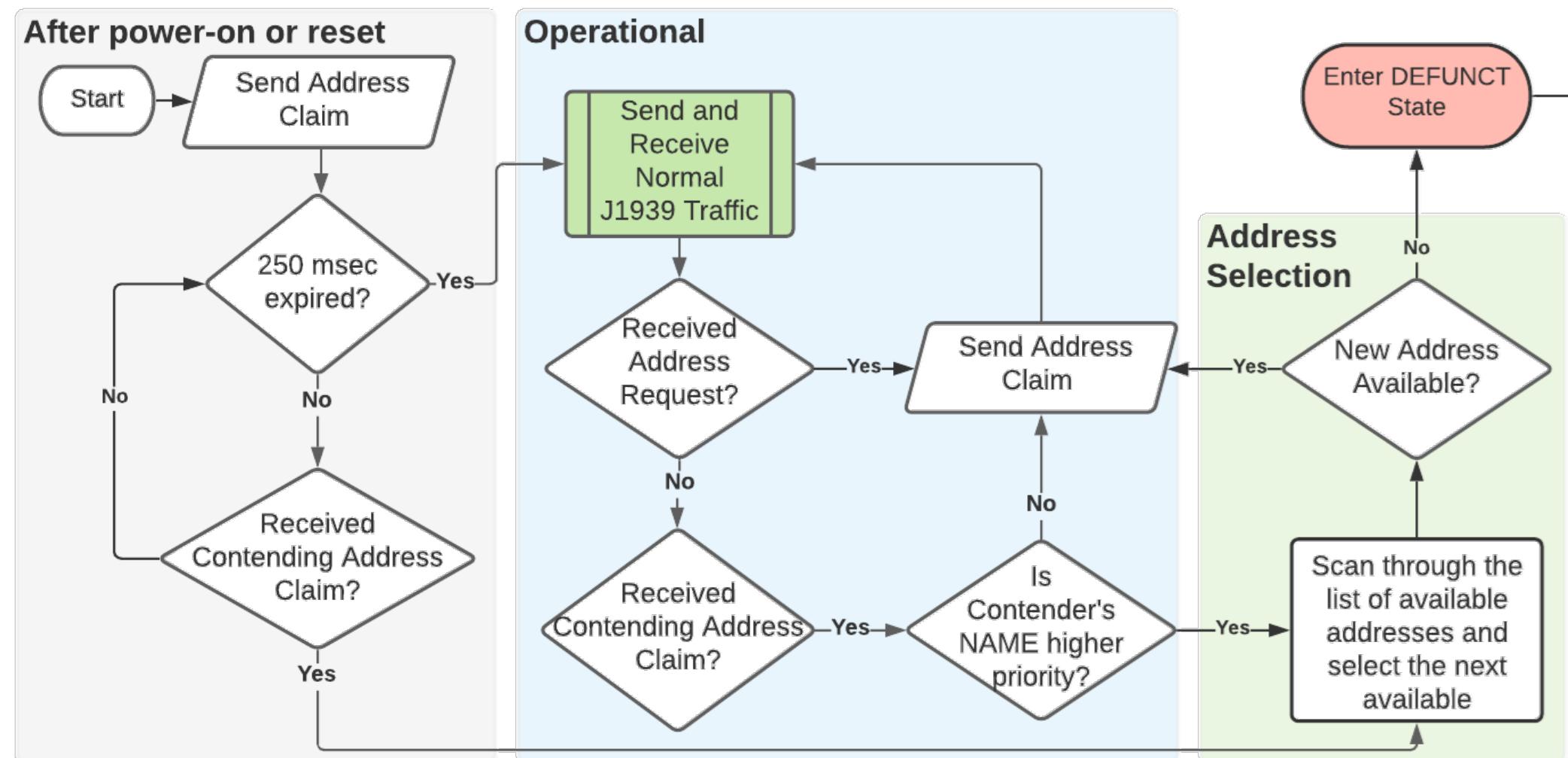
Some ECUs have multiple controller applications.

- SA 0x00: Engine #1
- SA 0x0F: Engine Retarder

Address Claims happen

- On Boot
- When requested
- In response to other claims for the same address

Address Claim Parameter Group Number


- 60928 (0xEE00)
- Mostly uses the Global destination address (0xFF)
- Source address is the address being claimed

Transmission Address Claim example:

18EEFF03: 64 00 40 00 00 03 03 10

- 18 – Priority 6 (default)
- EE – PGN 60928 = Address Claimed
- FF – Global Destination Address
- 03 – Source address for Transmission #1
- 64 00 40 00 00 03 03 10 – NAME Field

How Address Claiming Works

See SAE J1939-81 Network Management

Address NAME Field

Arbitrary Address Capable	Industry Group	Vehicle System Instance	Vehicle System	Reserved	Function	Function Instance	ECU Instance	Manufacturer Code	Identity Number
	SAE		SAE	SAE	SAE			SAE	
1 bit	3 bits	4 bits	7 bits	1 bit	8 bits	5 bits	3 bits	11 bits	21 bits

- From SAE J1939-81, the following NAME field is 64 Bits (8 bytes) long.
- Value is translated with little endian format (Intel), so the least significant byte is first.

- Example 1: Caterpillar C15 with ADEM4 ECU

```
can1 18EEFF00 [8] D0 6B 01 01 00 00 00 80
```

- Example 2: Detroit Diesel CPC3Evo

```
can1 18EEFF00 [8] 00 00 C0 01 00 00 00 00
```

- Additional Examples

CAN ID has:

- Priority = 6,
- Parameter Group Number = 0xEE00,
- Destination Address = 0xFF (Global),
- Claimed Source Address = 0x00 (Engine #1)

Example: Caterpillar Engine Controller

can1 18EEFF00 [8] D0 6B 01 01 00 00 00 80

Byte 8 (0x80) = 0b1000 0000, which means:

- it is arbitrary address capable,
- the industry group is 0 (global), and
- the vehicle system instance is zero.

Byte 5 -7 (00 00 00), which means:

- the vehicle system, function, and function instance are all zero, which is consistent with an engine controller

Byte 4 (0x01), Bits 1-8 = MSB of Mfg Code

Byte 3 (0x01), Bits 8-6 = LSB of Mfg Code

- 0b0000 0001 0000 0001 = 0b1000 = 8 (dec)

Byte 3 (0x01), bits 1-5 = MSB of Identity Field

Byte 2 (0x6B) = 2nd byte of identity field

Byte 1 (0xD0) = LSB of identity field

- 0b0 0001 0110 1011 1101 0000 = 93,136 (dec)

Manufacturer ID Codes (Table B10)

The list of all Manufacturer Identifier code assignments.

[Return To Documentation Tab](#)

R	Mfr ID	Manufacturer
	0	Reserved
	1	Bendix Commercial Vehicle Systems LLC (formerly Allied Signal Inc.)
	2	Allison Transmission, Inc.
	3	Ametek, US Gauge Division
	4	Ametek-Dixson
	5	AMP Inc.
	6	Berifors Electronics AB
	7	Case Corp.
	8	Caterpillar Inc.
	9	Chrysler Corp.
	10	Cummins Inc (formerly Cummins Engine Co)
	11	Dearborn Group Inc.
	12	Deere & Company, Precision Farming
	13	Delco Electronics
	14	Detroit Diesel Corporation
	15	DICKEY-john Corporation
	16	Eaton Corp
	17	
	18	
	19	
	20	
	21	
	22	
	23	
	24	
	25	
	26	
	27	
	28	
	29	
	30	
	31	
	32	
	33	
	34	
	35	
	36	
	37	
	38	
	39	
	40	
	41	
	42	
	43	
	44	
	45	
	46	
	47	
	48	
	49	
	50	
	51	
	52	
	53	
	54	
	55	
	56	
	57	
	58	
	59	
	60	
	61	
	62	
	63	
	64	
	65	
	66	
	67	
	68	
	69	
	70	
	71	
	72	
	73	
	74	
	75	
	76	
	77	
	78	
	79	
	80	
	81	
	82	
	83	
	84	
	85	
	86	
	87	
	88	
	89	
	90	
	91	
	92	
	93	
	94	
	95	
	96	
	97	
	98	
	99	
	100	
	101	
	102	
	103	
	104	
	105	
	106	
	107	
	108	
	109	
	110	
	111	
	112	
	113	
	114	
	115	
	116	
	117	
	118	
	119	
	120	
	121	
	122	
	123	
	124	
	125	
	126	
	127	
	128	
	129	
	130	
	131	
	132	
	133	
	134	
	135	
	136	
	137	
	138	
	139	
	140	
	141	
	142	
	143	
	144	
	145	
	146	
	147	
	148	
	149	
	150	
	151	
	152	
	153	
	154	
	155	
	156	
	157	
	158	
	159	
	160	
	161	
	162	
	163	
	164	
	165	
	166	
	167	
	168	
	169	
	170	
	171	
	172	
	173	
	174	
	175	
	176	
	177	
	178	
	179	
	180	
	181	
	182	
	183	
	184	
	185	
	186	
	187	
	188	
	189	
	190	
	191	
	192	
	193	
	194	
	195	
	196	
	197	
	198	
	199	
	200	
	201	
	202	
	203	
	204	
	205	
	206	
	207	
	208	
	209	
	210	
	211	
	212	
	213	
	214	
	215	
	216	
	217	
	218	
	219	
	220	
	221	
	222	
	223	
	224	
	225	
	226	
	227	
	228	
	229	
	230	
	231	
	232	
	233	
	234	
	235	
	236	
	237	
	238	
	239	
	240	
	241	
	242	
	243	
	244	
	245	
	246	
	247	
	248	
	249	
	250	
	251	
	252	
	253	
	254	
	255	

Example: Ski Boat Navigation

can1 18EEFF1C [8] 02 04 45 0E 00 00 00 42

Byte 8 (0x42) = 0b0100 0010, which means:

- it is NOT arbitrary address capable,
- the industry group is 4 (marine), and
- the vehicle system instance is 2.

Econtrols owns Perfect Pass and Zero Off, the systems for cruise control on ski boats.

Byte 7 (0x00), the vehicle system is non-specific

Byte 6 (0x00), function is non-specific

Byte 5 (0x00), the function and ECU instance is zero, which means it's the first instance.

Byte 4 (0x0E), Bits 1-8 = MSB of Mfg Code

Byte 3 (0x45), Bits 8-6 = LSB of Mfg Code

- 0b0000 1110 0100 0101 = 0b111001 = 114 (dec)

Bytes 3-1 (0x050402) comprise the identity field

Manufacturer ID Codes (Table B10)			
The list of all Manufacturer Identifier code assignments.			
Return To Documentation Tab			
Revised	Mfr ID	Manufacturer	Location
17	112	MECALAC	Annecy le Vieux, France
18	113	Stress-Tek, Inc.	Kent, WA USA
19	114	EControls, Inc.	San Antonio, TX USA
20	115	NACCO Materials Handling Group, Inc.	Portland, OR USA
21	116	BEELINE Technologies	Brisbane, QLD Australia
22	117	HUSCO International	Waukesha, WI USA
23	118	Intron GmbH	Schwaebisch Hall, Germany
24	119	IntegriNautics	Menlo Park, CA USA
25	120	RDS Technology Ltd	Minchinghamton, Stroud UK

Address Claim Attack

Idea: Claim someone else's address with a higher priority address (All Zeros).

Keep claiming addresses as they are dynamically claimed.

If a system can't find a claimable address, then it should stop broadcasting (Denial of Service)

The following example shows how to conduct an address claim attack:

https://github.com/SystemsCyber/CyberTruckResources/blob/master/05_J1939/06%20J1939%20Address%20Claim.ipynb

- Note: This runs on Linux Socket CAN
- Try it on any J1939 network

Run these commands in Ubuntu:

```
git clone https://github.com/SystemsCyber/CyberTruckResources.git
conda activate base
jupyter notebook
```

Additional Security Vulnerabilities Specific to J1939 Networks

<https://www.ndss-symposium.org/wp-content/uploads/2023/02/vehiclesec2023-23053-paper.pdf>

Exploiting Transport Protocol Vulnerabilities in SAE J1939 Networks

Rik Chatterjee
Colorado State University
rik.chatterjee@colostate.edu

Subhojeet Mukherjee
Colorado State University
subhojeet.mukherjee@colostate.edu

Jeremy Daily
Colorado State University
jeremy.daily@colostate.edu

Abstract—Modern vehicles are equipped with embedded computers that utilize standard protocols for internal communication. The SAE J1939 protocols running on top of the Controller Area Network (CAN) protocol is the primary choice of internal communication for embedded computers in medium and heavy-duty vehicles. This paper presents five different cases in which potential shortcomings of the SAE J1939 standards are exploited to launch attacks on in-vehicle computers that constitute SAE J1939 networks.

In the first two of these scenarios, we validate the previously proposed attack hypothesis on more comprehensive testing setups. In the later three of these scenarios, we present newer attack vectors that can be executed on bench test setups and deployed SAE J1939 networks.

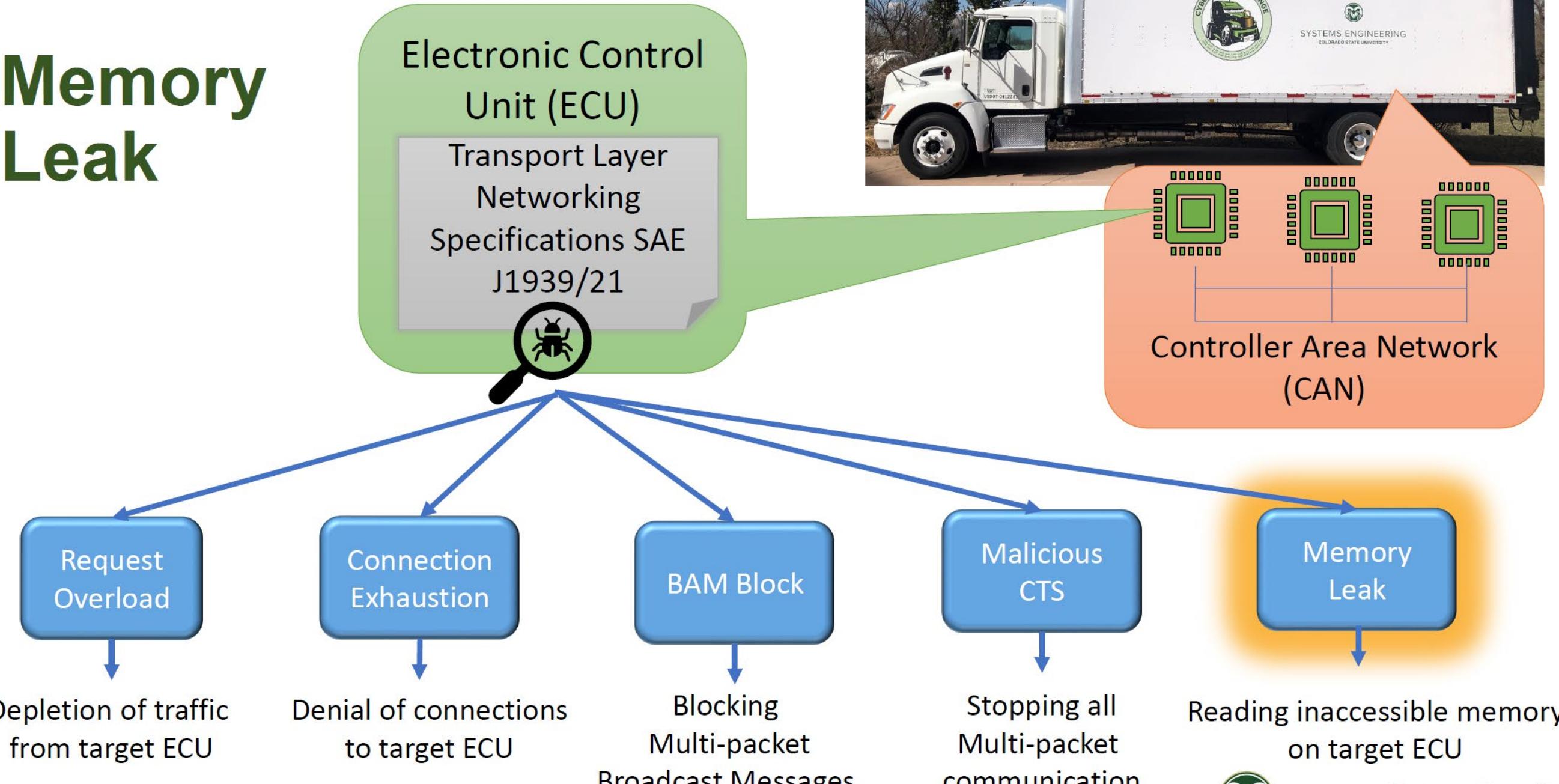
For the purpose of demonstration, we use bench-level test systems with real electronic control units connected to a CAN bus. Additional testing was conducted on a 2014 Kenworth T270 Class 6 truck under both stationary and driving conditions. Test results show how protocol attacks can target specific ECUs. These attacks should be considered by engineers and programmers implementing the J1939 protocol stack in their communications subsystem.

I. INTRODUCTION

Medium and heavy-duty (MHD) vehicles are a part of the US critical infrastructure, transporting goods, supporting emergency services, and so on. Modern MHD vehicles are electrified: most mechanical operations being controlled through embedded computers referred to as Electronic Control Units (ECUs). Within the vehicle, ECUs form networks to communicate mission critical information with each other on a bus topology. For MHD vehicles, the primary choice of communication specifications within these networks is the SAE J1939 standard. SAE J1939 documents [1] are organized in layers much like the ISO/OSI [2] standards for traditional IT networking. At its lowest layers, the SAE J1939 standards utilize the Controller Area Network (CAN) specifications [3] to facilitate the in-vehicle information exchange.

CAN is used widely in automotive networking and aspects of its (in)security has been thoroughly demonstrated. For example, it has been shown, with access to remote and local entry

points (vulnerable ECUs) to the CAN network, one can launch attacks on the vehicle to control or disrupt its operations. MHD vehicles also expose similar entry points [4] and, aside from CAN specific attacks, it has been shown that attacks can also be launched on the SAE J1939 protocols. Even so, the number of demonstrated attacks is still limited: Burakova et al. [5] have demonstrated a couple of attacks on the application layer specification of the SAE J1939 standards, Murvay et al. [6] have focused on weaknesses at the network management layer, and Mukherjee et al. [7] have targeted specific protocols at the data-link layer of the specifications.


While the application and network management layers are critical to the cyber-physical operations of the vehicle, important message transportation specifications are made in the data-link layer standards. As such, in this work we demonstrate newer attacks at the data-link layer of the SAE J1939 specifications that broaden the horizon of cyber threats already created by Mukherjee et al. [7]. Moreover, we validate two attacks that Mukherjee et al. demonstrated to work on laboratory test benches. For our validations we use more comprehensive testing setups, as well as a 2014 Kenworth T270 truck; the goal being to demonstrate the applicability and impact of the attacks on different platforms.

The overarching goal of this paper is to enhance the threatscape for in-vehicle networking applications in MHD vehicles. To that end, the rest of the paper is organized as follows. In section II we present a brief overview of SAE J1939, as required to clearly comprehend the contributions made in this paper. In section III we briefly cover the related work in this area. In section IV, we present a description of the testing setup used in this work. In section V, we describe the attack experimentation carried out during the course of the work. Finally, in section VI, we finish with concluding remarks and a brief introspection of the future work.

II. BACKGROUND ON SAE J1939

In-vehicle communication in medium and heavy-duty vehicles is mostly guided by the SAE J1939 standards. SAE J1939 messages carry operational parameters like engine speed, vehicle speed, switch status, etc. These parameters are bundled into logical groups referred to as Parameter Groups (PG). Each PG is identified by a unique number called a Parameter Group Number (PGN), which is also embedded in the message. Information in the J1939 message is carried in a J1939

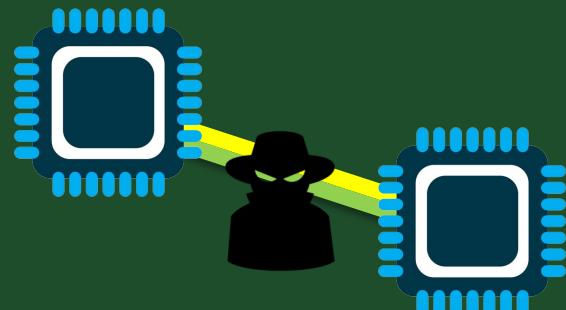
Memory Leak

Colorado State University

Hypothesis

- **Specification**
 - A CTS message should contain information indicating the number of data packets that can be sent over the transport protocol
- **Attack**
 - An attack can be constructed by sending a crafted CTS message with the value of the number of packets that can be sent larger value indicated by the RTS
- **Expected Result**
 - Get back data that is not supposed to be returned in multipacket transfer

Results Showing Leaked Data


The CyberBoat
Challenge ran in May
2022

The CyberTruck
Challenge gives an
aspirational example

J1939 Vulnerabilities
exist on NMEA 2000
networks

www.cyberboatchallenge.net
www.cybertruckchallenge.org

Contact:
Jeremy Daily, Jeremy.Daily@colostate.edu

<https://www.engr.colostate.edu/~jdaily/>